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Abstract: Large-sized 2D semiconductor materials have gained significant attention for their fascinat-
ing properties in various applications. In this work, we demonstrate the fabrication of nanoperforated
ultrathin β-Ga2O3 membranes of a nanoscale thickness. The technological route includes the fabri-
cation of GaN membranes using the Surface Charge Lithography (SCL) approach and subsequent
thermal treatment in air at 900 ◦C in order to obtain β-Ga2O3 membranes. The as-grown GaN
membranes were discovered to be completely transformed into β-Ga2O3, with the morphology
evolving from a smooth topography to a nanoperforated surface consisting of nanograin structures.
The oxidation mechanism of the membrane was investigated under different annealing conditions
followed by XPS, AFM, Raman and TEM analyses.

Keywords: β-Ga2O3; Surface Charge Lithography; ultrathin nanomembranes; phase transformation

1. Introduction

Gallium–oxide is a wide bandgap semiconductor material (4.9 eV at 300 K) attracting
the interest of researchers owing to its large Baliga’s figure of merit (BFOM) [1], high
breakdown electric field, and high temperature operation etc. These characteristics ren-
der it a perfect candidate for applications in high-performance power electronics [2,3],
where devices constructed from Ga2O3 bear the advantage of low power losses during
high frequency switching in the GHz regime [4]. Recently, β-Ga2O3 aeromaterial was
demonstrated to exhibit very low reflectivity and high transmissivity in an ultrabroadband
electromagnetic spectrum ranging from X-band to several THz, indicating a promising
future for applications in communication technologies [5].

Ga2O3 possesses different crystal structures such as corundum (α), monoclinic (β),
defective spinel (γ), orthorhombic (ε) and the δ phase being accepted as a form of the
orthorhombic phase [6–8]. The monoclinic β-Ga2O3 is considered the most stable one
under normal conditions of temperature and pressure [9] and a majority of field-related
studies are conducted on β-Ga2O3.

Currently, there are many technological approaches developed for growing bulk β-
Ga2O3 such as the Verneuil method, the floating zone method, the Czochralski method, the
edge-defined film-fed growth method or the Bridgman method [10–14]. For growing thin
films of β-Ga2O3, special techniques such as molecular beam epitaxy (MBE) [15], low pres-
sure chemical vapor deposition (LPCVD) [16], atomic layer deposition (ALD) [17], halide
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vapor phase epitaxy (HVPE) [18] and metal–organic vapor phase epitaxy (MOVPE) [19] are
usually applied. High-quality thin films are also obtained by applying smart-cut [20], or
mechanical exfoliation methods [21]. However, most of these techniques involve multiple
harmful chemical reactions and are performed under high growth temperatures. Ding
et al. [22] reported on the fabrication of gallium–oxide nanostructure by implying wet
etching of epitaxial GaN with subsequent annealing. As a result of 950 ◦C annealing for
5–15 min, the formation of a β-Ga2O3 shell on GaN nanowires occurs. Low peak to noise
intensity ratio of XRD diffractogram and SAED pattern demonstrate the polycrystalline
character of the nanowires [22].

Ga2O3 thin films prove to be a promising material for solar-blind photodetectors
due to its large bandgap and UVC absorption [23], transparent electrodes for optical
devices [24,25], gas sensors [26], and high-power Schottky barrier diodes with breakdown
field exceeding 1 kV [27]. Moreover, Hwang et al. [28] demonstrated the first high-voltage
transistor based on β-Ga2O3 nanomembranes exfoliated from bulk crystals. Using this
method [28], nanomembranes of a thickness in the range of 20 to 100 nm and surface
area of only few square-micrometers (µm2) can be obtained. Taking into account the
peculiarities of the exfoliation process, there remains a need to develop methods for highly
reproducible fabrication of large surface area nanomembranes. Gallium–oxide presents
a promising material for photonics and nonlinear optics [29–31], and for the fabrication
of bi-dimensional photonic crystals one may apply different techniques such as Surface
Charge Lithography, used previously for designing special 2D structures on GaN ultrathin
membranes [32].

In this paper, we demonstrate the fabrication of nanoperforated ultrathin β-Ga2O3
membranes using a cost-effective technological route consisting of two steps. In the first
step, the Surface Charge Lithography (SCL) is applied to fabricate GaN nanomembranes as
described previously [33–35]. In the second step, the GaN nanomembranes are transformed
into crystalline β-Ga2O3 under conditions of thermal treatment in air at 900 ◦C. The
transformation from hexagonal GaN to β-Ga2O3 phase is demonstrated by investigation of
the samples using TEM, AFM, Raman and XPS.

2. Materials and Methods
2.1. Fabrication of β-Ga2O3 Membranes

The GaN nanomembranes were fabricated by the SCL approach using epitaxial layers of
GaN (2 µm thick) on sapphire with a free charge carrier density of about 5 × 1017 cm−3. The
photolithography process was performed for defining the desired pattern of the regions to
be treated with 0.5 keV Ar+ ions in a plasma system at a dose of 1011 cm2. Ion treatment
leads to the generation of point defects in the near-surface region which becomes chemically
stable against photoelectrochemical (PEC) etching, due to the negative electrical charges
trapped by defects. The photoelectrochemical etching was performed in a 0.1 M KOH
solution under continuous UV irradiation from a 350 W Hg lamp.

Ultrathin nanomembranes of β-Ga2O3 were obtained by annealing of GaN nanomem-
branes at 900 ◦C for 1.5 h under ambient conditions.

2.2. EM Analysis

The morphology of the membranes was studied by using scanning electron microscopy
(SEM, Zeiss Gemini Ultra55 Plus, Oberkochen, Germany) at 10 kV. The high-resolution
imaging and crystal structure of the membranes were studied by field-emission transmis-
sion electron microscopy (FE-TEM, JEOL JEM-2100F; Akishima, Tokyo, Japan) at 200 kV.

2.3. XPS Analysis

The surface chemistry was assessed by X-Ray photoemission spectroscopy (XPS). XPS
analysis was carried out by means of an Axis Ultra DLD spectrometer (AXIS ULTRA, DLD
Kratos Analytical, Manchester, UK) equipped with both Al monochromatic (hν = 1486.6 eV)
and non-monochromatic Mg Kα source (hν = 1253.6 eV). The take-off angle (ToA) with
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respect to the sample normal was 0◦ for survey and high-resolution (HR) spectra. Surface
charging was compensated using low energy (~4 eV) electrons and adjusted using the
charge balance plate on the instrument. Selected samples were also analyzed after ion
cleaning (Ar+, 2 keV, 5 min). The spectra were calibrated setting hydrocarbon C 1 s
component at 285.0 eV.

2.4. AFM

The topography of the membranes was investigated using the S.I.S.-ULTRA Objective
NanoStation II (Rastersonden- und Sensormeßtechnik GmbH, Herzogenrath, Germany).
All measurements were performed in non-contact mode. For determination of surface
roughness, the results were processed using the software Gwyddion 2.6.

2.5. Raman

The Raman studies in this work were performed in backscattering geometry using
a Renishaw InVia Qontor confocal microscope (Renishaw plc, Wotton-under-Edge, UK)
equipped with a 532 nm laser excitation source. A 100× microscope objective lens with
NA = 0.75 was selected to focus the light on the sample surface. The system calibration
was performed on a monocrystalline Si wafer with a main peak measured at 520 cm−1. A
total of 50 spectra collected at 1 s exposure time and 10% laser power were averaged and
baseline subtracted. Cosmic Rays Removal tool was applied to the spectra before analysis.

3. Results and Discussion

Figure 1 illustrates the SEM images of the fabricated GaN ultrathin membranes and
the morphology evolution during the thermal treatment at different temperatures.

Figure 1. SEM images of the fabricated membranes: (a) as-grown GaN membrane and treated at
(b) 500 ◦C, (c) 700 ◦C and (d) 900 ◦C. The inserts in (a) and (d) represent oblique views; the scalebar
is 1 µm.

As can be seen from Figure 1, the as grown GaN membrane exhibits a very low
roughness, with the RMS measuring around 2.08 nm according to AFM investigation.
The sample treated at 500 ◦C exhibits only slight morphological changes compared with
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the as-grown membrane; however, a thin oxide layer formation is evidenced by XPS as
discussed later. According to Yamada et al. [36], the grain formation of Ga2O3 starts at
the dislocation points in the GaN layers grown on different substrates. Large oxide grains
formed at 900 ◦C can be correlated to the surface mass transport mechanism dominating
the selective local oxidation at the surface defects. The GaN oxidation is governed by the
following reaction:

GaN + O2 → GaOx + NOx, (1)

The RMS according to AFM measurements (Figure 2) equals 4.09 nm, 27.84 nm and
70.87 nm for samples treated at 500 ◦C, 700 ◦C and 900 ◦C, respectively.

Figure 2. The topography of the as grown (a) and thermally treated samples at (b) 500 ◦C, (c) 700 ◦C
and (d) 900 ◦C.

The Raman spectra from Figure 3 show that in the as-grown membranes as well as in
membranes treated at 500 ◦C only the GaN phase can be found, with peaks at positions
557 cm−1, 568.2 cm−1 and 736.2 cm−1 which can be attributed to Raman active modes
E1(TO), E2(high), and A1(LO) [37], respectively.

Regarding samples treated at 700 ◦C, the peak positions at 145.5 cm−1, 168.9 cm−1,
199.8 cm−1, 320.7 cm−1, 345.4 cm−1, 417.2 cm−1, 475.4 cm−1, 628.9 cm−1, 654.5 cm−1, and
766.9 cm−1 can be attributed to Raman active modes of Ga2O3 Bg(2), Ag(2), Ag(3), Ag(4),
Ag(5), Ag(6), Ag(7), Ag(8), Bg(5) and Ag(10) [38], respectively. The peaks at 568.2 and
736.2 cm−1 can be related to the GaN nucleation layer under the membrane. The nucleation
layer with a thickness of about 50 nm was grown initially on the sapphire substrate in order
to produce a high quality GaN with a thickness of 2 µm. This nucleation layer along with
the membrane proved to be chemically stable during the photoelectrochemical etching
process. However, in samples treated at 900 ◦C, only the β-Ga2O3 phase can be detected,
suggesting that even the nucleation layer was completely oxidized in this case.

In Figure 4, the XPS survey spectra of the initial GaN wafer, the as grown GaN ultrathin
membrane and the samples annealed at different conditions are presented. It is to be noted
that the survey spectra were collected using an Mg source in order to easily quantify
the Ga and N species. A slight Pb amount (<0.5 at%) was detected and attributed to the
contamination from silver paste used in the PEC process for contacting electrically the GaN
surface with the electrode (Figure 4a). A short etching process with Ar was necessary in
order to reduce the hydrocarbon contamination below 2 at%. In this case, a decrease of
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N content could be expected, since Ar ions will preferentially etch N and O resulting in
a possible enrichment of the Ga species [39,40]. However, in our experiments, given the
short etching time and the low energy Ar beam, we did not observe such an effect. The O
1s photoemission peak in the GaN wafer spectra can be attributed to a thin native oxide
layer, whilst the O 1s peak of the as grown film was likely due to the presence of oxygen
in the film structure as indicated by the shift to a lower binding energy (~0.5 eV). After
annealing, the O 1s peak intensity increases whereas that of the N 1s peak reduces almost
to zero (Figure 4a,d). This finding together with the Ga 2p peak shift of about 1 eV toward
higher binding energies (Figure 4b) proves the film oxidation. Moreover, the analysis of Ga
3d and Ga 3p (not shown) doublets further corroborate the full oxidation of the film. In
particular, the Ga 3d doublet shows a shift of about 1.3 eV toward higher binding energies
(Figure 4c), whilst the position of the Ga 3p reported in Table 1 reveals a systematic shift to
higher energies as expected in case of Ga oxidation [41–44].

Figure 3. The Raman spectra of as-grown GaN membrane and membranes thermally treated at
different temperatures.

Table 1. Ga 3d peak positions obtained by fitting XPS core level spectra.

Sample Ga 3d Peak Position (eV)

Wafer 19.46
As grown 19.26

500 ◦C 19.97
700 ◦C 20.28
900 ◦C 20.45

The as-grown GaN membrane shares a wurtzite type P63mc structure oriented along [1]
zone axis, single crystal texture as indicated by electron diffraction (ED) as well as a simu-
lated diffraction pattern (Figure 5a,b). High resolution (HR) micrographs of the membranes
treated at three temperatures (Figure 5c,f,h) show a well textured surface; however, with
an increase in temperature a partial evaporation and material consumption necessary for
recrystallization occurs. After 500 ◦C treatment (Figure 5d,e), ED indicates the formation
of an α-Ga2O3 R-3c structure oriented along the [1] axis. Additional reflections can be
attributed to [1] wurtzite GaN and [111] γ-Ga2O3 Fd-3m, which coincide in the given zone
axis orientations for first and third order of reflections. As XPS results demonstrate the pres-
ence of both nitrogen and oxygen species, one can conclude the formation of oxide occurs
simultaneously with retention of GaN. ED patterns of 700 ◦C treated samples (Figure 5g)
reveal a clearer picture and are indicative of a higher quality crystal structure. At the
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same time, the pattern can be attributed to same structures and orientations as at 500 ◦C
treatment. Despite the low temperature treatment, these samples contain an increased level
of oxygen and lack of nitrogen as depicted in Figure 4b,c. Therefore, the GaN phase can
be excluded and only the formation of α and γ-Ga2O3 crystal structures is confirmed in
700 ◦C treated membranes. Analysis of the crystal structure of 900 ◦C treated membranes
(Figure 5h,i) is highly complicated by the recrystallization and formation of disordered
nanograins. Polycrystalline diffraction patterns and fast Fourier transformations of HR can
be attributed to all GaN, α, β and γmodifications of Ga2O3. High treatment temperature
and XPS results exclude the possibility of preservation of GaN and α-Ga2O3 modifications.
We managed to identify the highly strained [183] oriented β-Ga2O3 ED pattern presented
in Figure 5i.

Figure 4. XPS Spectra of the as-grown and thermally treated membranes: (a) survey spectra,
(b–d) core level spectra of Ga 2p, Ga 3p and O 1s, respectively. (Samples etched for 2 min with
2 keV Ar+ ions).

The crystalline quality of the obtained Ga2O3 nanomembranes is comparable to that
inherent to ultrathin layers of Ga2O3 obtained by using ALD techniques with subsequent
annealing. A recent study reported on ICPE-ALD synthesis of 2D layers of β-Ga2O3 on
Si, sapphire, and glass [45]. The authors demonstrated evolution of XRD patterns from an
amorphous layer to a fairly-crystallized one after ex situ treatment at 800 ◦C. Applying
various growth and crystallization methods, it remains difficult to combine large-area
uniformity and high crystal quality of β-Ga2O3 structures. The nanometric thickness of the
membranes and the possibility to keep them free-standing, and exclusion of the substrate
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impact during the growth process represent the key points differentiating this work from
other studies of ultrathin layers of Ga2O3.

Figure 5. TEM analysis of as-grown and thermally treated membranes: (a) HR micrograph of as-
grown, (c) 500 ◦C, (f) 700 ◦C and (h) 900 ◦C treated membranes; (b,d,e,g,i) ED patterns composed of
simulated patterns.

4. Conclusions

The results obtained in the present study demonstrate that thermal treatment of GaN
ultrathin membranes fabricated using SCL leads to a phase transformation to Ga2O3. The
most stable Ga2O3 phase was obtained by annealing the GaN membranes at 900 ◦C in air.
At intermediate temperatures, the formation of α and γ phases of Ga2O3 were disclosed by
TEM analysis. The AFM demonstrates the formation of nanograins with an increasing size
after annealing the samples at temperatures reaching up to 900 ◦C. Thus, the combination of
the SCL and thermal treatment under ambient conditions presents a cost-efficient approach
for obtaining large-sized ultrathin membranes of β-Ga2O3.
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