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HEP has some very specific requirements about the usage of deep learning.

Also, HEP is known for outrageous amounts of data produced in a single col-

lision. For example, at LHC we are talking about petabyte per second scales,

and with the introduction of HL-LHC, this numbers will grow significantly.

Currently, the HEP community wants to find out, is it possible to efficiently

run neural networks in low-level triggers, thus reducing the amount of col-

lected data without compromising its quality? This work aims to find answers

to this question and the future directions of current deep network tools used

in HEP. This work is a technical report on the project I was working between

2nd in July and 24rd of August 2018.
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Introduction

Deep Learning methods have been proved to work very well on a plethora of problems, ranging

from computer vision to natural language processing, to finding patterns where other machine

learning methods are failing to do so. What makes deep learning so popular is (a) it’s ability

to discover highly non-linear correlations in data, and (b) very high learning capacity, which

means that deep learning excels in problems with a big amount of data. Now, HEP scientists

and engineers are preoccupied with the problem of identifying new particles, and generally,

new phenomena, in their experiments. Usually, these experiments yield terabytes, sometimes

even petabytes of data, that has to be filtered right away and after that stored. There’s a chance

that useful information will be filtered too. Usage of deep learning methods in HEP isn’t a new

thing (1). For example, using deep learning is possible to identify fairly accurate the Higgs

Boson, and recently, CERN launched a new competition (2) on the Kaggle platform, this being

the 3rd in the last 4 years. What is now of interests to the HEP community, is to find how

the current tools can be used for real-time inference, so that filtering becomes more efficient.

In this work, I have benchmarked the ROOT’s TMVA package versus different configurations

of Google’s TensorFlow framework, in order to find the best use-cases of both tools in the

HEP domain. All benchmark and model creation code is available on GitHub∗. The paper is

organized the following way: after the introduction follows the benchmark setting explanation,

then the TMVA versus all popular TensorFlow configurations on CPU, to identify the inference

overhead in both frameworks, then the benchmark of TMVA versus TensorFlow C++ API on

dependency of inference time on neural network size, then the dependency of inference time on

the batch size, and finally conclusions and further discussions section.

∗https://github.com/AlexandruBurlacu/cern-tmva-v-tensorflow-benchmark
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Benchmark Settings

For this project was used an Intel i7-7820X CPU @ 3.60GHz with 8 physical cores and Hyper-

Threading enabled, and 32 GB DDR4 RAM. TensorFlow was tested both as a pip installed

package, version 1.9rc1, and as a built from source library (version 1.8), using bazel with In-

tel MKL-DNN artifact library and all supported optimizations enabled, like FMA, AVX, AVX2,

AVX512f, SSE4.1, and SSE4.2. Also, for C++ API, the MKL-DNN library wasn’t liked to the

TensorFlow, only optimizing CPU instructions were enabled. For TMVA the GNU Scientific

Library’s BLAS was used. The TMVA development team recommends using instead Open-

BLAS. In an independent benchmark, the performance of OpenBLAS-based TMVA was an

order of magnitude higher than GSL-BLAS-based TMVA (3). For all TensorFlow-based con-

figurations, the benchmark loop runs 100 times the same batch and divides the resulting time

by 100. For the TMVA-based benchmark, the benchmark runs on a test set of 10000 events

and after that using a dedicated method the benchmark time is obtained, divided by 10000 and

multiplied by the batch size to get an approximate running time per batch. For both frameworks,

was used a 25 input nodes Multi-Layered Perceptrons (MLPs), with 2 outputs, with ReLU ac-

tivation after each layer except last, and with the batch sizes of 1, 8, 32, 256 and 1024, number

of hidden layers from 1 to 5 and width of layers 15, 16, 30, 32, 128, 130, 250, 256, 1000, 1024.

Configuration was partially inspired by (4). Layer widths of 4000 and 4096 were initially also

considered, but due to very long running times and occasional memory errors, were dropped

from the experiments. For both frameworks, the neural networks were not trained but only

initialized using Glorot uniform initialization (5).
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Inference overhead

When the project started, there was an assumption that there’s a significant overhead when doing

inference in TensorFlow after each batch, comparing to TMVA. In order to find out if that is true,

I selected the from the collected timing data information only about the smallest network, that

is 1 hidden layer with 16 neurons, and with batch sizes of 1, 8 and 32. As can be seen in (Fig.

1A), the inference time on batch size 1 is roughly 2 orders of magnitude faster on TMVA than

on any configuration of TensorFlow, moreover of Keras. To find how this overhead develops

with increased network size, I chose a bigger model, now 2 layers and 32 neurons per layer, and

the same configuration for batches. As seen in (Fig. 1B) the performance difference between

TMVA and TensorFlow is now about 30-50x and drops to no difference between TMVA and

TensorFlow C++ API with batch size 32. This experiment shows that TMVA is extremely well

optimized on small-sized networks, but as the network size and batch size increases, TensorFlow

takes over.

Dependency of the inference time on the model size

It is clear that model size and batch size directly influence the inference time of a neural network,

now we wanted to find out how much does it influence the results, and when to choose TMVA

over TensorFlow. For this experiment, we also tried 3 batch sizes, 1 (Fig. 2A), 8 (Fig. 2B), and

32 (Fig. 2C) and all combinations of the number of layers and number of neurons per layer.

The values in heatmap’s cells show the ratio of TMVA inference time over TensorFlow C++ API

inference time. These can be interpreted as darker the color, therefore smaller the coefficient,

faster is TMVA versus TensorFlow. From (Fig. 2 A-C) we see that TMVA is very fast for

small model sizes and batch sizes, as in the previous section, but also that TensorFlow probably

optimizes for number of neurons per layer that are powers of two, because the performance
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difference of networks with layer size 1000 and 1024 are dramatic, for former TMVA can be

even up to 40 times faster than TensorFlow, while for the later up to 40 times slower (note these

values are the extremes, for different batch sizes). This insight is very important because it

extends the use-cases for TMVA up to big networks real-time inference (Fig. 2A), because the

capacity of a network with 1000 neurons per layer isn’t dramatically bigger than of a network

with 1024 neurons, and should be sufficient for many problems, while the performance gain is

superior.

Dependency of the inference time on the batch size

The final question that we had was - How does the inference time depends on the batch size

for both TMVA and TensorFlow? To answer this, we collected all the inference times for fixed

sized networks, in our case 2 layers and 128 neurons per layer (Fig. 3A), and 3 layers and 256

neurons per layer (Fig. 3B). Batch sizes are 1, 8, 32, 256 and 1024. From (Fig. 3 A, B) we

see very well that TMVA is more or less on par with TensorFlow in different configurations up

until batch size 32, after which it turns significantly slower, almost an order of magnitude. This

means that TMVA is pretty good small batch size inference use-cases, and as shown previously,

real-time inference, while TensorFlow is better in high-throughput scenarios.

Conclusion and Further Discussions

The results of this extensive MLP benchmark shows that TMVA currently shines in small net-

work size and small batch size or real-time inference, while TensorFlow is more optimized for

high throughput and bigger models. This, and also other factors, like the size of the TMVA

development team, and special requirements of the HEP research community suggest that a

good roadmap of TMVA’s deep learning capabilities would be to double down on its strengths

and use TensorFlow, via some interchange format where it is not that good, like training or
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high throughput scenarios. This can be done using some converter tool, from either hdf5 Keras

files, that are very popular or from TensorFlow’s exporting format - the ProtoBuf graph and

maybe checkpoint files. It’s interesting to see how will TMVA compare to TensorFlow on

Convolutional Neural Networks. A way to optimize further the TMVA package would be to

use MKL-DNN artifacts library from Intel, for they are not currently used. A more radical idea

would be to develop another tool that would allow simple mapping of TMVA models to FPGAs,

like (6), with the focus on optimizing the build for low latency.
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Appendix A: Figures

Fig. 1. Inference overhead benchmark results. Left figure is A and the right one is B. These

figures show the inference time difference on small batches for very small neural networks in

order to prove the assumption that TMVA has a negligible prediction overhead comparing to

TensorFlow.
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Fig. 2. Dependency of the inference time on the model size benchmark results. From left to

right, A, B, C. These figures show the inference time dependency on the neural network size to

further explore the limits of TMVA. The darker the color of the heatmap cell, the faster is TMVA

comparing to TensorFlow. i.e. 0.014 means 0.014 = t(TMV A)/t(TF ) ⇒ t(TMV A) ∼

t(TF )/71.

Fig. 3. Dependency of the inference time on the batch size benchmark results. Left figure

is A and the right one is B. These figures show the inference time dependency on the neural

network’s batch size to identify the most effective batch sizes for TMVA package. The Figure

A uses a 2 layer, 128 neurons per layer, and Figure B uses a 3 layer, 256 neurons per layer.
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