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8
Estimation of Hyper-Order of Solutions to Higher Order Complex Linear

Differential Equations with Entire Coefficients of Slow Growth
115

Amina Ferraoun, Benharrat Beläıdi
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ON SOLVING THE VARIATIONAL PROBLEM
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Abstract A method for solving the Lagrange problem with state variable constraints
for processes described by ordinary differential equations without involvement
of the Lagrange principle is proposed. A necessary and sufficient condition
for existence of a solution to the variational problem is obtained, an admis-
sible control is found and an optimal solution is constructed by narrowing a
set of admissible controls. The basis of the proposed method for solving the
variational problem is an imbedding principle. An essence of the imbedding
principle is that the original variational problem with boundary conditions and
state variable constraints is replaced by equivalent free end point optimal con-
trol problem. This approach is possible due to finding a general solution of a
class of the first kind Fredholm integral equations.
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1. INTRODUCTION

Calculus of variations was formed as an independent branch of mathematics
in the second half of the 19th century, with regards to the works of L. Euler,
J. Lagrange. One of the methods for solving problems of calculus of variations
is the Lagrange principle. The Lagrange principle allows to reduce the origi-
nal problem to searching an extremum of the Lagrange functional formulated
by introducing auxiliary variables (the Lagrange multipliers). The Lagrange
principle is an assertion about existence of the Lagrange multipliers satisfying
a set of conditions in the case when the original problem has a weak local min-
imum. The Lagrange principle provides a necessary condition for a weak local
minimum and it doesn’t exclude an existence of another methods for solving
problems of calculus of variations that don’t involve the Lagrange functional.

The works [1]-[3] are devoted to the Lagrange principle. An unified approach
to different extremal problems based on the Lagrange principle is described in
[4].

The aim of this work is to develop a method for solving a problem of cal-
culus of variations for processes described by ordinary differential equations
with state variable constraints different from the known methods based on the
Lagrange principle. It is a continuation of research presented in [9]-[20].

1



2 Serikbay Aisagaliev, Assem Kabidoldanova

2. STATEMENT OF THE PROBLEM

Consider the following problem

J(u(·), x0, x1) =

t1∫
t0

F0(x(t), u(t), x0, x1, t)dt→ inf (1)

for the dynamical system described by

ẋ = A(t)x+B(t)f(x, u, t), t ∈ I = [t0, t1], (2)

with the boundary conditions

(x(t0)) = x0, x(t1) = x1) ∈ S0 × S1 = S ⊂ R2n, (3)

the state variable constraints

x(t) ∈ G(t) : G(t) = {x ∈ Rn/ω(t) ≤ F (x, t) ≤ ϕ(t), t ∈ I}, (4)

where the control function

u(·) ∈ L2(I,Rm). (5)

Here A(t), B(t) are n× n, n× r matrices with piecewise-continuous elements
respectively, the vector valued function f(x, u, t) = (f1(x, u, t), . . . , fr(x, u, t))
is continuous with respect to (x, u, t) ∈ Rn×Rm×I, and satisfies the Lipschitz
condition with respect to x, i.e.

|f(x, u, t)− f(y, u, t)| ≤ l(t)|x− y|, (6)

∀(x, u, t), (y, u, t) ∈ Rn ×Rm × I,

and the condition

|f(x, u, t)| ≤ c0(|x|+ |u|2) + c1(t), ∀(x, u, t), (7)

where l(t) ≥ 0, l(t) ∈ L1(I,R1), c0 = const > 0, c1(t) ≥ 0, c1(t) ∈ L1(I,R1).
The vector valued function F (x, t) = (F1(x, t), . . . , Fs(x, t)) is continuous
with respect to the set of variables (x, t) ∈ Rn × I. The scalar function
F0(x, u, x0, x1, t) is defined and continuous together with its partial deriva-
tives with respect to (x, u, x0, x1), ω(t), ϕ(t), t ∈ I are given s× 1 continuous
functions. S is a given bounded convex closed set in R2n, the time instants
t0, t1 are fixed.

Note that the differential equation (2) has an unique solution x(t), t ∈ I
under the conditions (6), (7) for any control function u(·) ∈ L2(I,Rm) and
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the initial condition x(t0) = x0. This solution has a derivative ẋ ∈ L2(I,Rn)
and satisfies the equation (2) at almost all t ∈ I.

Definition 2.1. The triple (u∗(t), x
∗
0, x
∗
1) ∈ U × S0 × S1 is said to be an

admissible control for the problem (1) – (5), if the boundary value problem
(2) – (5) has a solution. Denote by Σ the set of all admissible controls, Σ ⊂
U × S0 × S1.

It follows from this definition that for each element of the set Σ the following
assertions hold: 1) the solution x∗(t), t ∈ I to the differential equation (2),
starting from the point x∗0 ∈ S0, satisfies the condition x∗(t1) = x∗1 ∈ S1,
(x∗0, x

∗
1) ∈ S0 × S1 = S; 2) the inclusion x∗(t) ∈ G(t), t ∈ I holds.

The following problems are posed:

Problem 1. Find a necessary and sufficient condition for existence of a
solution to the boundary value problem (2) – (5).

Note that the optimal control problem (1) – (5) has a solution if and only
if the boundary value problem (2) – (5) has a solution.

Problem 2.Find an admissible control (u∗(t), x
∗
0, x1∗∗) ∈ Σ.

If problem 1 has a solution, then there exists an admissible control.

Problem 3. Find an optimal control u∗(t)∈U(t), a point (x∗0, x
∗
1)∈S0 ×

S1 and an optimal trajectory x∗(t; t0, x
∗
0), t ∈ I, where x∗(t) ∈ G(t), t ∈

I, x∗(t1) = x∗1 ∈ S1, J(u∗(·), x∗0, x∗1) = inf J(u(·), x0, x1), ∀(u(·), x0, x1) ∈
L2(I,Rm)× S0 × S1.

In classical calculus of variations it is assumed that a solution to the differ-
ential equation (2) belong to the space C1(I,Rn), and a control u(t), t ∈ I is
considered to belong to C(I,Rm), and in optimal control problems [5] a so-
lution x(t) ∈ KC1(I,Rn), and a control u(t) ∈ KC(I,Rm). In the presented
paper the control u(t), t ∈ I is chosen from L2(I,Rm), and the solution x(t),
t ∈ I is an absolutely continuous function in I = [t0, t1]. For this case an
existence and uniqueness of a solution to the initial problem (2) are presented
in [4], [6]-[8].

3. THE IMBEDDING PRINCIPLE

Consider the linear control system

ẏ = A(t)y +B(t)w(t), t ∈ I, (8)

w(·) ∈ L2(I,Rr), (9)

y(t0) = x0 ∈ S0, y(t1) = x1 ∈ S1. (10)
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The basis for the imbedding principle resides in the following theorems
about properties of solutions to the first kind Fredholm integral equation

Ku :=

t1∫
t0

K(t0, t)u(t)dt = a, (11)

where K : L2(I,Rr) → Rn, K(t0, t) is an n × r given matrix with piecewise
continuous elements with respect to t at every fixed t0, t0 ∈ ∆0 ⊂ R1, t1 ∈
∆1 ⊂ R1, ∆0 ∩∆1 = Ø, here the symbol Ø denotes an empty set, a ∈ Rn is
an arbitrary given vector, u(·) ∈ L2(I,Rr) is an unknown function.

Theorem 3.1. For the integral equation (11) to have a solution at any fixed
a ∈ Rn it is necessary and sufficient a positive definiteness of the n×n matrix

C(t0, t1) =

t1∫
t0

K(t0, t)K
∗(t0, t)dt, (12)

where the symbol (∗) denotes a transposition.

Theorem 3.2. Let the matrix C(t0, t1) be positive definite. Then a general
solution to the integral equation (11) is defined by
u(t) = K∗(t0, t)C

−1(t0, t1)a+ v(t)−

−K∗(t0, t)C−1(t0, t1)

t1∫
t0

K(t0, t)v(t)dt, t ∈ I, (13)

where v(·) ∈ L2(I,Rr) is an arbitrary function, a ∈ Rn is any given vector.

We refer the reader for the proofs of theorems 3.1, 3.2 to [9], [18].
It can be easily shown that a control w(·) ∈ L2(I,Rr), moving the system

(8) starting from any initial point x0 to any desired final state x1, is a solution
to the integral equation

t1∫
t0

Φ(t0, t)B(t)w(t)dt = a, (14)

where Φ(t, τ) = λ(t)λ−1(τ), λ(t) is a fundamental matrix solutions to the
linear homogeneous system ρ̇ = A(t)ρ, the vector

a = a(x0, x1) = Φ(t0, t1)x1 − x0. (15)
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As it follows from (11), (14), the matrix K(t0, t) = Φ(t0, t)B(t). For the inte-
gral equation (12) the assertions of theorems 3.1, 3.2 are applicable. Define
the following matrices and vectors by the given data of the system (8) – (10)

T (t0, t1) =

t1∫
t0

Φ(t0, t)B(t)B∗(t)Φ∗(t0, t)dt,

Λ1(t, x0, x1) = B∗Φ∗(t0, t)T
−1(t0, t1)a,

N1(t) = −B∗(t)Φ∗(t0, t)T−1(t0, t1)Φ(t0, t1),

Λ2(t, x0, x1) = Φ(t, t0)T (t, t1)T−1(t0, t1)x0+

+Φ(t, t0)T (t0, t)T
−1(t0, t1)Φ(t0, t1)x1,

N2(t) = −Φ(t, t0)T (t0, t)T
−1(t0, t1)Φ(t0, t1), t ∈ I,

T (t, t1) =

t1∫
t

Φ(t0, τ)B(τ)B∗(τ)Φ∗(t0, τ)dτ,

T (t0, t) = T (t0, t1)− T (t, t1), t ∈ I,

where the vector a is defined by (13).

Theorem 3.3. Let the matrix T (t0, t1) be positive definite. Then a control
w(·) ∈ L2(I,Rr) brings the trajectory of the system (8) – (10) from the initial
point x0 ∈ S0 to the final state x1 ∈ S1 if and only if w(t) ∈W,

W = {w(·) ∈ L2(I,Rr)/w(t) = v(t) + Λ1(t) +N11(t)z(t1), t ∈ I}, (16)

where v(·) ∈ L2(I,Rr) is an arbitrary function. The function z(t) = z(t, v),
t ∈ I is a solution to the differential equation

ż = A(t)z +B(t)v(t), z(t0) = 0, t ∈ I, (17)

v(·) ∈ L2(I,Rr). (18)

The solution to the differential equation (8) corresponding to the control
(16) is defined by

y(t) = z(t) + Λ2(t, x0, x1) +N2(t)z(t1, v), t ∈ I, (19)

where z(t) = z(t1, v), t ∈ I.

Proof. The proof of the theorem follows from theorems 3.1, 3.2. As it follows
from the presented above solving the boundary value problem (8) – (10) is
reduced to the integral equation (14). The integral equation (14) is a special
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case of (11), where K(t0, t) = Φ(t0, t)B(t). Further by substituting Φ(t0, t)B(t)
for K(t0, t) we obtain C(t0, t1) = T (t0, t1) (see (12)). The formula (13) implies
(16). The differential equation (17) with the control (18) and the relation (19)
directly follows from

z(t, v) =

t∫
t0

Φ(t, τ)B(τ)v(τ)dτ, z(t1, v) = Φ(t1, t0)

t1∫
t0

Φ(t0, t)B(t)v(t)dt.

It can be easily seen that y(t0) = x0, y(t1) = x1.

Note that the following assertions hold. 1) The set W ⊂ L2(I,Rr) contains
all the controls w(t), t ∈ I, such that the boundary value problem (8) – (10)
has a solution; 2) If w(t) ∈ W, then the solution to the system (8) – (10) is
defined by (19); 3) There is no any control outside the set W, for which the
boundary value problem (8) – (10) has a solution; 4) Theorem 3.3 allows to
reduce the boundary value problem (8) – (10) to the initial problem (17) –
(19).

Lemma 3.1. Let the matrix T (t0, t1) be positive definite. Then the boundary
value problem (2) – (5) is equivalent to the following

w(t) ∈W, w(t) = f(P1y(t), u(t), x0, x1, t), t ∈ I, (20)

p(t) = F (P1y(t), t), p ∈ V, (21)

ż = A(t)z +B(t)v(t), z(t0) = 0, t ∈ I, (22)

v(·) ∈ L2(I,Rr), (23)

(x0, x1) ∈ S0 × S1 = S ⊂ R2n, u(·) ∈ L2(I,Rm), (24)

where the function y(t), t ∈ I is given by (19),

V (t) = {p(·) ∈ L2(I,Rs)/ ω(t) ≤ p(t) ≤ ϕ(t), t ∈ I}.

Proof. Lemma 3.1 states that the boundary value problem (2) – (5) has a
solution if and only if the relations (20) – (24) hold.

Indeed, if the relations (20) – (24) hold, then y(t) = x(t), t ∈ I, moreover
y(t0) = x(t0) = x0, y(t1) = x(t1) = x1 and the inclusion (3) hold.

Let the boundary value problem (2) – (5) has a solution. This holds if and
only if f(P1x(t), u(t), t) ∈ W by theorem 3.3. This inclusion is equivalent to
(20), where z(t), t ∈ I is a solution to the differential equation (22) corre-
sponding to the control (23). The inclusion P1x(t) ∈ G(t), t ∈ I has the form
(21), and the inclusions from (3) and (5) are rewritten as (24).
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Consider the following optimal control problem

I1(u(·), p(·), v(·), x0, x1) =

t1∫
t0

F1(q(t), t)dt→ inf (25)

under the conditions

ż = A(t)z +B(t)v(t), z(t0) = 0, t ∈ I, (26)

v(·) ∈ L2(I,Rr), (27)

p(t) ∈ V (t), u(·) ∈ L2(I,Rm), (x0, x1) ∈ S0 × S1 = S, (28)

where F1(q(t), t) = |w(t) − f(P1y(t), u(t), x0, x1, t)|2 + |p(t) − F (P1y(t), t)|2,
q(t) = (z(t, v), z(t1, v), u(t), p(t), v(t), x0, x1).

Denote

H = L2(I,Rm)× L2(I,Rs)× L2(I,Rr)×Rn ×Rn,

X = L2(I,Rm)× V × L2(I,Rr)× S0 × S1 ⊂ H,

θ(t) = (u(t), p(t), v(t), x0, x1) ∈ X, q(t) = (z(t), z(t1), θ(t)).
The optimization problem (27) – (30) can be represented in the form:

I1(θ(·)) =

t1∫
t0

F1(q(t), t)→ inf, θ(·) ∈ X ⊂ H.

Note that the following assertions hold.
1) Since the value I1 ≥ 0, for existence of a solution to the boundary value

problem (2) – (5) it is necessary and sufficient to have inf I1(θ(t)) = 0 under
the conditions (26) – (28).

2) Reducing the original boundary value problem (2) – (5) to the free end-
point optimal control problem I1(θ(t)) → inf, (26) – (28) is called an imbed-
ding principle.

4. EXISTENCE OF A SOLUTION

Let the set X∗ = {θ∗(·) ∈ X| I1(θ∗(·)) = inf
θ∈X

I1(θ(·))}.

Lemma 4.1. Let the matrix T (t0, t1) be positive definite. A necessary and
sufficient condition for the boundary value problem (2) – (5) to have a solution
is lim

n→∞
I1(θn) = I1∗ = inf

θ∈X
I1(θ) = 0, where {θn(·)} ⊂ X is a minimizing

sequence for the problem (25) – (28).
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The proof of the lemma follows from theorem 3.3 and lemma 3.1.

Theorem 4.1. Let the matrix T (t0, t1) be positive definite, the function F1(q, t)
be defined and continuous with respect to (q, t) together with its partial deriva-
tives with respect to q and satisfies the Lipschitz condition

|F1q(q + ∆q, t)− F1q(q, t)| ≤ l|∆q|, t ∈ I, (29)

where l = const > 0,

F1q(q, t)=(F1z(q, t), F1z(t1)(q, t), F1u(q, t), F1p(q, t), F1v(q, t), F1x0(q, t), F1x1(q, t)),

q ∈ Rn×Rn×Rm×Rs×Rr×Rn×Rn, ∆q = (∆z,∆z(t1),∆u,∆p,∆v,∆x0,∆x1).
Then the functional (25) under the conditions (26) – (28) is continuously
Frechet differentiable, the gradient

I ′1(θ) = (I ′1u(θ), I ′1p(θ), I
′
1v(θ), I

′
1x0

(θ), I ′1x1
(θ)) ∈ H

at any point θ ∈ X is computed by

I ′1u(θ) = F1u(q(t), t), I ′1p(θ) = F1p(q(t), t),

I ′1v(θ) = F1v(q(t), t)−B∗(t)ψ(t), I ′1x0
(θ) =

t1∫
t0

F1x0(q(t), t)dt, (30)

I ′1x1
(θ) =

t1∫
t0

F1x1(q(t), t)dt,

where z(t), t ∈ I is a solution to the differential equation (26), and the function
ψ(t), t ∈ I is a solution to the conjugate system

ψ̇ = F1z(q(t), t)−A∗(t)ψ, ψ(t1) = −
t1∫
t0

F1z(t1)(q(t), t)dt. (31)

Moreover the gradient I ′1(θ), θ ∈ X satisfies the Lipschitz condition

‖I ′1(θ1)− I ′1(θ2)‖ ≤ K‖θ1 − θ2‖, ∀θ1, θ2 ∈ X, (32)

where K = const > 0.

Proof. Let θ(t), θ(t) + ∆θ(t) ∈ X, z(t, v), z(t, v + ∆v), t ∈ I are solutions to
the system (26), (27). Let z(t, v) = z(t, v) + ∆z(t), t ∈ I. Then

|∆z(t)| ≤ C1‖∆v‖. (33)
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The increment of the functional (see (29))

∆I1 = I1(θ + ∆θ)− I1(θ) =

t1∫
t0

[F1(q(t) + ∆q(t), t)− F1(q(t), t)]dt =

=

t1∫
t0

[∆u∗(t)F1u(q(t), t) + ∆p∗(t)F1p(q(t), t) + ∆v∗(t)F1v(q(t), t)+

+∆x∗0F1x0(q(t), t) + ∆x∗1F1x1(q(t), t)+

+∆z∗(t)F1z(q(t), t) + ∆z∗(t1)F1z(t1)(q(t), t)]dt+
7∑
i=1

Ri, (34)

where

|R1| ≤ l1

t1∫
t0

|∆u(t)||∆q(t)|dt, |R2| ≤ l2

t1∫
t0

|∆p(t)||∆q(t)|dt,

|R3| ≤ l3

t1∫
t0

|∆v(t)||∆q(t)|dt, |R4| ≤ l4

t1∫
t0

|∆x0||∆q(t)|dt,

|R5| ≤ l5

t1∫
t0

|∆x1||∆q(t)|dt, |R6| ≤ l6

t1∫
t0

|∆z(t)||∆q(t)|dt,

|R7| ≤ l7
t1∫
t0

|∆z(t1)||∆q(t)|dt by the Lipschitz condition (29). Note that (see

(31), (33))
t1∫
t0

∆z∗(t1)F1z(t1)(q(t), t)dt =

= −
t1∫
t0

∆v∗(t)B∗(t)ψ(t)dt−
t1∫
t0

∆z∗(t)F1z(q(t), t)dt. (35)
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From (34), (35) we have

∆I1 =

t1∫
t0

{∆u∗(t)F1u(q(t), t) + ∆p∗(t)F1p(q(t), t) + ∆v∗(t)[F1v(q(t), t)−

−B∗(t)ψ(t)]+∆x∗0F1x0(q(t), t)+∆x∗1F1x1(q(t), t)+
7∑
i=1

Ri =< I ′1(θ),∆θ >H +R,

where R =
7∑
i=1

Ri, |R| ≤ C3‖∆θ‖2,
|R|
‖∆θ‖

→ 0, as ‖∆θ‖ → 0. This yields (30).

Let

θ1 = (u+∆u, p+∆p, v+∆v, x0 +∆x0, x1 +∆x1), θ2 = (u, p, v, x0, x1) ∈ X.

As
|I ′1(θ1)− I ′1(θ2)|2 ≤ l10|∆q(t)|2 + l11|∆ψ(t)|2 + l12|∆θ|2,

|∆q(t)| ≤ l13‖∆θ‖, |∆ψ(t)| ≤ l14‖∆θ‖,

the estimate holds

‖I ′1(θ1)− I ′1(θ2)‖2 =

t1∫
t0

|I ′1(θ1)− I ′1(θ2)|2dt ≤ l15‖∆θ‖2,

where li = const > 0, i = 10, 15. This implies (32), where K =
√
l15.

Lemma 4.2. Let the matrix T (t0, t1) be positive definite, the function F1(q, t)
be convex with respect to q ∈ RN , N = 4n + m + s + r. Then the functional
(25) under the conditions (26) – (28) is convex.

Proof. Let θ1, θ2 ∈ X, α ∈ [0, 1]. It is not hard to prove that

z(t, αv1 + (1− α)v1) = αz(t, v1) + (1− α)z(t, v1),

∀v1, v1 ∈ L2(I,Rr).

Then

I1(αθ1 + (1−α)θ2) =

t1∫
t0

F1(αq1(t) + (1−α)q2(t))dt ≤ αI1(θ1) + (1−α)I1(θ2),

∀θ1, θ2 ∈ X, θ1 = (u1, p1, v1, x
1
0, x

1
1), θ2 = (u1, p1, v1, x0, x1).
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The free end-point optimal control problem (25) – (28) can be solved by
numerical methods for solving extremal problems [21]-[23]. Let us introduce
the following sets

U = {u(·) ∈ L2(I,Rm)/‖u‖ ≤ β},

V (I,Rr) = {v(·) ∈ L2(I,Rr)| ‖v‖ ≤ β},

β > 0 is a sufficiently large number.
Generate the sequence {θn} = {un, pn, vn, xn0 , xn1} ⊂ X1, n = 0, 1, 2, . . . by

the rules

un+1 = PU [un − αnI ′1u(θn)], pn+1 = PV [pn − αnI ′1p(θn)],

vn+1 = PV1 [vn − αnI ′1v(θn)], xn+1
0 = PS0 [xn0 − αnI ′1x0

(θn)],

xn+1
1 = PS1 [xn1 − αnI ′1x1

(θn)], n = 0, 1, 2, . . . , (36)

0 < ε0 ≤ αn ≤
2

K + 2ε
, ε > 0,

here PΩ[·] is a projection of a point onto the set Ω, K = const > 0 from (32).

Theorem 4.2. Let the assumptions of theorem 4.1 hold and in addition the
function F1(q, t) be convex with respect to q ∈ RN and the sequence {θn} ⊂ X1

be defined by (36). Then the following assertions hold.
1) The functional (25) attains its infimum under the conditions (26) – (28),

i.e.
inf
θ∈X1

I1(θ) = I1(θ∗) = min
θ∈X1

I1(θ), θ∗ ∈ X1;

2) The sequence {θn}⊂X1 is minimizing, lim
n→∞

I1(θn)=I1∗= inf
θ∈X1

I1(θ);

3) The sequence {θn} ⊂ X1 weakly converges to the point
θ∗ = (u∗, p∗, v∗, x

∗
0, x
∗
1) ∈ X1;

4) For the problem (2) – (5) to have a solution it is necessary and sufficient
to have lim

n→∞
I1(θn) = I1∗ = 0;

5) The rate of convergence can be estimated as

0 ≤ I1(θn)− I1∗ ≤
C0

n
, n = 1, 2, . . . , C0 = const > 0. (37)

Proof. Since the function F1(q, t), t ∈ I is convex the functional I1(θ), θ ∈ X1

is convex on the weakly bicompact set X1 by lemma 4.2.
Consequently I1(θ) ∈ C1(X1) is weakly semicontinuous from below on the

weakly bicompact set X1 and attains its infimum on X1. This yields the first
assertion of the theorem.
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By the property of a projection of a point onto the convex and closed set
X1 and taking into account I1(θ) ∈ C1,1(X1) it can be easily proved that

I1(θn)− I1(θn+1) ≥ ε‖θn − θn+1‖2,

n = 0, 1, 2, . . . , ε > 0. Hence we have the following.
1) The numerical sequence {I1(θn)} strictly decreases;
2) ‖θn − θn+1‖ → 0 as n→∞.
Since the functional is convex and the set X1 is bounded, the inequality

holds

0 ≤ I1(θn)− I1(θ∗) ≤ C1‖θn − θn+1‖, C1 = const > 0, n = 0, 1, 2, . . . . (38)

Therefore taking into account ‖θn − θn+1‖ → 0 as n→∞, we get that the
sequence {θn} is minimizing lim

n→∞
I1(θn) = I1(θ∗) = inf

θ∈X1

I1(θ).

As {θn} ⊂ X1, the set X1 is weakly bicompact the sequence θn
weakly−−−−−→ θ∗

as n→∞.
As it follows from lemma 4.1 if the value I1(θ∗) = 0, then the optimal

control problem (1) – (5) is solvable.
The estimate (37) directly follows from the inequality (38),

I1(θn)− I1(θn+1) ≥ ε‖θn − θn+1‖2.

The main stages of the proof for the theorem has been presented above.
Proof of the similar theorem is given in [20] in detail.

The following theorem is for the case when the function F1(q, t) is non-
convex with respect to q.

Theorem 4.3. Let the assumptions of theorem 4.1 hold, the sequence {θn} ⊂
X1 be defined by (36). Then the following assertions hold.

1) The values of the functional I1(θn) strictly decreases, where n = 0, 1, 2, . . . ;
2) ‖θn − θn+1‖ → 0 as n→∞.

The proof of the theorem follows from theorem 4.2.
The following assertions follow from the results presented above.
1) If θ∗=(u∗, p∗, v∗, x

∗
0, x
∗
1)∈X1 is a solution to the optimization problem

(25) – (28) such that I1(θ∗) = 0, then (u∗ = u∗(t), x
∗
0, x
∗
1) ∈ Σ ⊂ U × S0 × S1

is an admissible control;
2) The function x∗(t; t0, x

∗
0), t ∈ I is a solution to the differential equation

(2), satisfies the conditions x(t1; t0, x
∗
0) = x∗1, x∗(t; t0, x

∗
0) ∈ G(t), t ∈ I;

3) A necessary and sufficient condition for existence of a solution to the
boundary value problem (2) – (5) is I1(θ∗) = 0 where θ∗ ∈ X1 is a solution to
the problem (25) – (28);
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4) The value of the functional (1) for the admissible control is

I(u∗(·), x∗0, x∗1) =

t1∫
t0

F0(x∗(t), u∗(t), x
∗
0, x
∗
1, t)dt = γ∗, (39)

where x∗(t) = x∗(t; t0, x
∗
0), t ∈ I. In general case the value I(u∗(·), x∗0, x∗1) 6=

I(u∗, x
∗
0, x
∗
1) = inf I(u(·), x0, x1), (u(·), x0, x1) ∈ L2(I,Rm)× S0 × S1.

5. CONSTRUCTING AN OPTIMAL SOLUTION

Consider the optimization problem (1) – (5). Let us define the scalar func-
tion σ(t), t ∈ I by

σ(t) =

t∫
t0

F0(x(τ), u(τ), x0, x1, τ)dτ, t ∈ I.

Then σ̇(t) = F0(x(t), u(t), x0, x1, t), σ(t0) = 0,
σ(t1) = γ = I(u(·), x0, x1) ∈ Ω = {γ∈R1|γ≥γ0, γ0 > −∞},
where γ = I(u(·), x0, x1) ≥ γ0, the value γ is bounded from below, in particular
γ0 = 0, if F0 ≥ 0.

Now the optimal control problem (1) – (5) is presented in the form (see
(25))

σ(t1) = γ = I(u(·), x0, x1)→ inf (40)

under the conditions

σ̇(t) = F0(x(t), u(t), x0, x1, t), σ(t0) = 0, σ(t1) = γ, (41)

ẋ = A(t)x+B(t)f(x, u, t), (x(t0) = x0, x(t1) = x1) ∈ S0 × S1, (42)

x(t) ∈ G(t), u(·) ∈ L2(I,Rm), t ∈ I. (43)

Introduce the notations

µ(t) =

(
σ(t)
x(t)

)
, A2(t) =

(
O1,1 O1,n

On,1 A(t)

)
, B0 =

(
1

On,1

)
,

C0(t) =

(
O1,r

B(t)

)
, P0 =

(
1, O1,n

)
, P1 =

(
On,1, In

)
,

where P0µ(t1) = σ(t1), P1µ = x.
Then the optimal control problem (40) – (43) has the form

P0µ(t1) = γ = I(u(·), x0, x1)→ inf, (44)
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under the conditions

µ̇ = A2(t)µ+B0F0(P1µ, u, x0, x1, t) + C0(t)f(P1µ, u, t), (45)

µ(t0) = µ0 =

(
σ(t0)
x(t0)

)
=

(
O1,1

x0

)
∈ O1,1 × S0 = T0, (46)

µ(t1) = µ1 =

(
σ(t1)
x(t1)

)
=

(
γ
x1

)
∈ Ω× S1 = T1, (47)

P1µ(t) ∈ G(t), u(·) ∈ L2(I,Rm), (48)

here x(t) = P1µ(t), σ(t) = P0µ(t), t ∈ I, γ is defined by (44).

6. IMBEDDING PRINCIPLE

Consider the boundary value problem (45) – (48). The corresponding linear
control system has the form

ζ̇ = A2(t)ζ +B0w1(t) + C0(t)w2(t), t ∈ I, (49)

w1(·) ∈ L2(I,R1), w2(·) ∈ L2(I,Rr), (50)

ζ(t0) = µ0 ∈ T0, ζ(t1) = µ1 ∈ T1. (51)

Introduce the following notations

B0(t) = (B0, C0(t)), w(t) = (w1(t), w2(t)),Ψ(t, τ) = K(t)K−1(τ),

a = Ψ(t0, t1)µ1 − µ0, R(t0, t1) =

t1∫
t0

Ψ(t0, t)B0(t)B
∗
0(t)Ψ∗(t0, t)dt,

R(t0, t) =

t∫
t0

Ψ(t0, τ)B0(τ)B
∗
0(τ)Ψ∗(t0, τ)dτ,R(t0, t1) = R(t0, t) +R(t, t1),

Λ1(t, µ0, µ1) = B
∗
0(t)Ψ∗(t0, t)R

−1(t0, t1)a =

=

(
B∗0Ψ∗(t0, t)R

−1(t0, t1)a
C∗0Ψ∗(t0, t)R

−1(t0, t1)a

)
=

(
Λ11(t, µ0, µ1)
Λ12(t, µ0, µ1)

)
,
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K1(t) = −B∗0Ψ∗(t)(t0, t)R
−1(t0, t1)Ψ(t0, t1) =

=

(
−B∗0Ψ∗(t0, t)R

−1(t0, t1)Ψ(t0, t1)
−C∗0Ψ∗(t0, t)R

−1(t0, t1)Ψ(t0, t1)

)
=

(
K11(t)
K12(t)

)
,

Λ2(t, µ0, µ1) = Ψ(t, t0)R(t, t1)R−1(t0, t1)µ0+Ψ(t, t0)R(t0, t)R
−1(t0, t1)Ψ(t0, t1)µ1,

K2(t) = −Ψ(t, t0)R(t0, t)R
−1(t0, t1)Ψ(t0, t1), t ∈ I.

Theorem 6.1. Let the matrix R(t0, t1) be positive definite. Then a control
w(t) = (w1(t), w2(t)) ∈ L2(I,R1+r) brings a trajectory of the system (49) –
(51) from any initial point µ0 ∈ R1+n to any desired final state µ1 ∈ R1+n if
and only if w1(t) ∈W 1, w2(t) ∈W 2,

W 1 = {w1(·) ∈ L2(I,R1)/w1(t) = v1(t) + Λ11(t, µ0, µ1) +K11(t)z(t1, v),

∀v1(·) ∈ L2(I,R1), t ∈ I}, (52)

W 2 = {w2(·) ∈ L2(I,Rr)/w2(t) = v2(t) + Λ12(t, µ0, µ1) +K12(t)z(t1, v),

∀v2(·) ∈ L2(I,Rr), t ∈ I}, (53)

where v(t) = (v1(t), v2(t)), z(t) = z(t, v), t ∈ I is a solution to the differential
equation

ż = A2(t)z +B0v1(t) + C0(t)v2(t), z(t0) = 0, (54)

v1(·) ∈ L2(I,R1), v2(·) ∈ L2(I,Rr). (55)

The solution to the system (49) – (51) is defined by

ζ(t) = z(t, v) + Λ2(t, µ0, µ1) +K2(t)z(t1, v), t ∈ I. (56)

The proof of the theorem is similar to that of theorem 3.3.

Lemma 6.1. Let the matrix R(t0, t1) be positive definite. Then the boundary
value problem (45) – (48) is equivalent to the problem

w1(t) ∈W 1, w1(t) = F0(P1ζ, u, x0, x1, t), t ∈ I, (57)

w2(t) ∈W 2, w2(t) = f(P1ζ, u, t), t ∈ I, (58)

p(t)∈V (t), p(t)=F (P1ζ, t), t ∈ I, (59)

ż = A2(t)z +B0v1(t) + C0(t)v2(t), z(t0) = 0, t ∈ I, (60)

v1(·) ∈ L2(I,R1), v2(·) ∈ L2(I,Rr), (61)
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(x0, x1) ∈ S0 × S1, u(·) ∈ L2(I,Rm), γ ∈ Ω, (62)

V (t)={p(·)∈L2(I,Rs)/ω(t) ≤ p(t) ≤ ϕ(t), t ∈ I},

here ζ(t), t ∈ I is defined by (56), z(t, v) is a solution to the system (54), (55).

The assertion of lemma 6.1 follows from theorem 6.1.
Consider the following optimal control problem

J2(v, u, p, x0, x1, γ) =

t1∫
t0

F2(q(t), t)dt =

=

t1∫
t0

[|w1(t)− F0(P1ζ(t), u(t), x0, x1, t)|2 + |w2(t)− f(P1ζ(t), u(t), t)|2+

+ |p(t)− F (P1ζ(t), t)|2]dt→ inf (63)

under the conditions (60)- (62), where w1(t) ∈ W 1, w2(t) ∈ W 2, v = (v1, v2),
q(t) = (v1, v2, u, p, x0, x1, γ, z(t), z(t1).

Note that the optimization problem (63), (60)–(62) has been obtained on
the base of (57)- (62).

Theorem 6.2. Let the matrix R(t0, t1) be positive definite, the derivative
∂F2(q, t)

∂q
satisfies the Lipschitz condition. Then the following assertions hold.

1 The functional (63) under the conditions (60) – (62) is continuously
Frechet differentiable, the gradient of the functional

J
′
2(θ) = (J

′
2v1

(θ), J
′
2v2

(θ), J
′
2u(θ), J

′
2p(θ), J

′
2x0

(θ), J
′
2x1

(θ), J
′
2γ(θ)),

θ = (v1, v2, u, p, x0, x1, γ) ∈ X,
X = L2(I,R1)× L2(I,Rr)× L2(I,Rm)× V × S0 × S1 × Ω,

H1 = L2(I,R1)× L2(I,Rr)× L2(I,Rm)× L2(I,Rs)×
×Rn ×Rn ×R1, X ⊂ H1, J

′
2(θ) ∈ H1

at any point θ ∈ X is calculated by

J
′
2v1

(θ) =
∂F2(q(t), t)

∂v1
−B∗0ψ(t), J

′
2v2

(θ) =
∂F2(q(t), t)

∂v2
− C∗0ψ(t),

J
′
2u(θ) =

∂F2(q(t), t)

∂u
, J

′
2p(θ) =

∂F2(q(t), t)

∂p
,
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J
′
2x0

(θ) =

t1∫
t0

∂F2(q(t), t)

∂x0
dt, J

′
2x1

(θ) =

t1∫
t0

∂F2(q(t), t)

∂x1
dt,

J
′
2γ(θ) =

t1∫
t0

∂F2(q(t), t)

∂γ
dt,

here ψ(t), t ∈ I is a solution to the conjugate system

ψ̇ =
∂F2(q(t), t)

∂z
−A∗2(t)ψ, ψ(t1) = −

t1∫
t0

∂F2(q(t), t)

∂z(t1)
dt;

2 The gradient J
′
2(θ), θ ∈ X satisfies the Lipschitz condition

‖J ′2(θ1)− J ′2(θ2)‖ ≤ l‖θ1 − θ2‖, ∀θ1, θ2 ∈ X. (64)

The proof of the theorem is similar to that of theorem 4.1.
Construct the sequence {θn} = {vn1 , vn2 , un, pn, xn0 , xn1 , γn} ⊂ X2 by the rule

vn+1
1 = PV 1

[vn1 − αnJ
′
2v1

(θn)], vn+1
2 = PV 2

[vn2 − αnJ
′
2v2

(θn)],

un+1 = PU [un − αnJ
′
2u(θn)],

pn+1 = PV [pn − αnJ
′
2p(θn)], xn+1

0 = PS0 [xn0 − αnJ
′
2x0

(θn)],

xn+1
1 = PS1 [xn1 − αnJ

′
2x1

(θn)], (65)

γn+1 = PΩ[γn − αnJ
′
2γ(θn)], n = 0, 1, 2, ...,

0 ≤ αn ≤
2

l + 2ε
, ε > 0, l = const > 0, (66)

where

V 1 = {v1(·) ∈ L2(I,R1)/‖v1‖ ≤ β}, V 2 = {v2(·) ∈ L2(I,Rr)/‖v2‖ ≤ β},

U = {u(·) ∈ L2(I,Rm)/‖u‖ ≤ β}, Ω = {γ ∈ R1/γ∗ ≤ γ ≤ β},

X2 = V 1 × V 2 × U × V × S0 × S1 × Ω ⊂ H1, β > 0 is a sufficiently large
number.

Theorem 6.3. Let the assumptions of theorem 6.2 hold, X1 is a bounded
convex closed set, the sequence {θn} ⊂ X2 be defined by (66). Then the
following assertions hold.
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1 The numerical sequence {J2(θn)} strictly decreases, ‖θn − θn+1‖ → 0 as
n→∞.

If in addition F2(q, t) is a convex function with respect to q, then the
following assertions hold.

2 An infimum of the functional (63) is attained under the conditions (60)
– (62);

3 The sequence {θn} ⊂ X2 is minimizing, lim
n→∞

J2(θn) = J2∗ = inf
θ∈X2

J2(θ);

4 The sequence {θn} ⊂ X2 weakly converges to the point θ∗ ∈ X1∗,

X2∗ = {θ∗/J2(θ∗) = J2∗ = inf
θ∈X1

J2(θ) = min
θ∈X1

J2(θ)},

θ∗ = (v∗1, v
∗
2, u∗, p∗, x

∗
0, x
∗
1, γ∗);

5 If J2(θ∗) = 0, then the optimal control for the problem (1) – (5) is
u∗ ∈ U, x∗0 ∈ S0, x

∗
1 ∈ S1, and the optimal trajectory

x∗(t) = P1ζ∗(t) = P1[z(t, v∗) + Λ2(t, µ∗0, µ
∗
1) +K2(t)z(t1, v∗)], t ∈ I,

where v∗ = (v∗1, v
∗
2), µ∗0 = (O1,1, x

∗
0), µ∗1 = (γ∗, x

∗
1), the inclusion x∗(t) ∈

G(t) and the constraint (5) hold, J(u∗, x
∗
0, x
∗
1) = γ∗;

6 The convergence rate can be estimated as

0 ≤ J2(θn)− J2∗ ≤
c0

n
, n = 1, 2, ..., c0 = const > 0.

The proof of the similar theorem is presented above.
The more evident method for solving the problem (1) – (5) is the method

of sequently narrowing of the set of admissible controls.

Theorem 6.4. Let the assumptions of theorem 6.2 hold, X3 = V 1×V 2×U ×
V × S0 × S1 be a bounded convex and closed set, the sequence {θn} ⊂ X2 be
defined by (64) except the sequence {γn} ⊂ Ω. Then the following assertions
hold.

1 The numerical sequence {J2(θn)} strictly decreases, {θn} ⊂ X3;

2 ‖θn − θn+1‖ → 0 as n→∞, {θn} ⊂ X3;

If besides the function F2(q, t) is convex with respect to q at fixed γ, then
the following assertions hold.

3 The sequence {θn} ⊂ X3 at fixed γ = γ∗ is minimizing;
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4 θn
weakly−−−−−→ θ∗ ∈ X3 as n→∞, γ = γ∗;

5 J2(θ∗) = inf
θn∈X3

J2(θn) = min
θn∈X3

J2(θn);

6 The convergence rate can be estimated as

0 ≤ J2(θn)− J2(θ∗) ≤
c1

n
, c1 = const > 0, n = 1, 2, ..., {θn} ⊂ X3.

The proof of the theorem is based on theorem 6.3 at fixed γ ∈ Ω, γ = γ∗.
Let θ∗ ∈ X2 is a solution to the problem (63), (60) – (62) at γ = γ∗ ∈ Ω.

The two cases are possible:

1 the value J2(θ∗) > 0;

2 the value J2(θ∗) = 0.

Note that J2(θ) ≥ 0, θ ∈ X3.
If J2(θ∗) > 0, then for the new value of γ one can choose γ = 2γ∗, and if

J2(θ∗) = 0, then the new value γ =
γ∗
2

. By repeatedly bisecting an interval

the minimal value of the functional (1) can be found under the conditions (2)
– (5).

7. CONCLUSIONS

The Lagrange problem of calculus of variations with state variable con-
straints for processes described by ordinary differential equations is studied.
The special cases of this problem are the simplest problem, the Bolza problem,
the isoperimetric problem, conditional extremum problem.

The new approach named the imbedding principle different from the known
method based on the Lagrange principle is proposed. The basis for the imbed-
ding principle is studies on the first kind Fredholm integral equation. The
existence theorem and the theorem on a general solution has been proved for
the first kind Fredholm integral equation.

The main results of the research are the following.
– Reducing the boundary value problem associated with the conditions in

the Lagrange problem to the free end-point optimal control problem with the
specific objective functional;

– A necessary and sufficient condition for existence of an admissible control;
– The method for constructing an admissible control by the limit point of

minimizing sequences;
– A necessary and sufficient condition for existence of a solution to the

Lagrange problem;
– The method for constructing a solution to the Lagrange problem.
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The novelty of the obtained results is that it isn’t required an introducing
auxiliary variables as the Lagrange multiplies and consequently, studies on an
existence of a saddle point for the Lagrange functional; the existence problem
and constructing a solution to the Lagrange problem are solved together.
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Abstract On définit et étudie les couples de sous-catégories coréflectives et les sous-
catégories c-réflectives dans la catégorie des espaces localement convexes Haus-
dorff.

Si (K,L) est un couple de sous-catégories conjuguées, alors:
1. K et L sont des catégories isomorphes.
2. K et L sont des sous-catégories semi-abéliennes.
3. Le produit semi-réflexif de la sous-catégorie L avec toute sous-catégorie

réflective est une sous-catégorie L-semi-reflexive.
4. Le produit semi-coréflexif de la sous-catégorie K avec toute sous-catégorie

coréflective est une sous-catégorie K-semi-coréflexive.

Keywords: foncteure exactement à gaucghe, sous-catégories coréflective, réflective, L-semi-

réflexive.
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1. Introduction

Notons avec C2V la catégorie des espaces localement convexes topologiques
vectoriels Hausdorff (voir [14]).

Dans cet article, on va définir plusieurs notions. Nous utiliserons les nota-
tions suivantes.

Structures de factorisation:
(Epi,Mf ) = (la classe des épimorphismes, la classe des noyaux) = (la classe

des morphismes à image dense, les inclusions topologiques à image fermée);
(Eu,Mp) = (la classe des épimorphismes universels, la classe des monomor-

phismes précis)=(la classe des morphismes surjectifs, la classe des inclusions
topologiques);

(Ep,Mu) = (la classe des épimorphismes précis, la classe des monomor-
phismes universels) (voir [4]);

(Ef ,Mono) =(la classe des conoyaux, la classe des monomorphismes)=(la
classe des morphismes factoriels, la classe des morphismes injectifs).

Sous-catégories coréflectives et réflectives:

23
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Σ = la sous-catégorie coréflective des espaces avec la plus fine topologie
localement convexe [14];

M̃ = la sous-catégorie coréflective des espaces avec la topologie Mackey [14];
S = la sous-catégorie réflective des espaces avec la topologie faible [14];
Π = la sous-catégorie réflective des espaces complets avec la topologie faible

[14];
uN = la sous-catégorie réflective des espaces ultranucléaires [8, 11];
N = la sous-catégorie réflective des espaces nucléaires [15];
Sh = la sous-catégorie réflective des espaces Schwartz [13];
iR = la sous-catégorie réflective des espaces inductifs semi-réflexifs [2];
sR = la sous-catégorie réflective des espaces semi-réflexifs [14];
Γ0 = la sous-catégorie réflective des espaces complets;
K la classe des sous-catégories coréflectives non nulles;
R la classe des sous-catégories réflectives non nulles;
R(A) la classe des sous-catégories réflectives de la catégorie A, où A ∈ K,

ou A ∈ R;
K(A) la classe des sous-catégories coréflectives de la catégorie A, où A ∈ K,

ou A ∈ R;
K(B) (respectivement: R(B)) la classe des sous-catégories B-coréflectives

(respectivement: B-réflectives), où B ⊂ C2V;
Rex (respectivement: Rex(Eu)) la classe des sous-catégories réflectives (re-

spectivement: Eu-réflectives) fermée par rapport aux extensions: (Epi ∩Mp)-
facteur-objets.

1.1. Soit A et B deux classes de morphismes. Alors:
1. A ◦B = {a · b|a ∈ A, b ∈ B et la composition a · b existe}.
2. La classe A se nomme B-héréditaire, si f · g ∈ A et f ∈ B, alors g ∈ A.
20. La classe A se nomme B-cohéréditaire, si f ·g ∈ A et g ∈ B, alors f ∈ A.
La classe Epi est Mu-héréditaire ([4], Lemme 2.6), la classe Mu est Epi-

cohéréditaire.
3. A> est la classe de tous les morphismes orthogonaux du dessus pour tout

morphisme de A, et Aq = A> ∩ Epi (voir [1,4,6]).
30. A⊥ est la classe de tous les morphismes orthogonaux du bas pour tout

morphisme de A, et Ax = A⊥ ∩Mono.
4. La classe A se nomme stable à gauche, si pour tout carré cartésien

f · g′ = g · f ′

avec f ∈ A, il résulte que f ′ ∈ A aussi.
40. La classe stable à droite.
Dans la catégorie C2V, les classes Ef et Eu sont stables à gauche, et les

classes Mf , Mp et Mu sont stables à droite (voir [4]).
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1.2. Pour M, classe de monomorphismes, et A, classe d’objets (une sous-
catégorie), notons par SM(A) la sous-catégorie pleine de tous les M-sous-objets
des objets de A, et P (A) la sous-catégorie pleine de tout produit des objets
de A.

Notation duale: QE(A), où E ⊂ Epi.
1.3. L’opération λR (voir [1]). Soit A une classe d’épimorphismes de la

catégorie C2V. Notons avec λ(A) la sous-catégorie pleine de tout les objets Z
à propriété:

Pour tout p : X → Y ∈ A, tout morphisme f : X → Z s’exteint par p:

f = g · p,

pour un g.
Si L est une classe d’objets ou une sous-catégorie de la catégorie C2V et

R ∈ R, alors notons λR(L) = λ(A), où A = {rX |X ∈ |L|}.
L’opération λ∗(A) est définie duale et λ∗K(A), où A ⊂ Mono, ou A est une

sous-catégorie de la catégorie C2V.
1.4. Proposition. Pour toute classe d’épimorphismes, A la sous-catégorie

λ(A) est épiréflective.

Les résultats principaux de l’ouvrage.

On définit les couples de sous-catégories conjuguées, les sous-catégories c-
coréflectives et c-réflectives (Définition 2.6). On indique les conditions pour
que deux sous-catégories forment un couple de sous-catégories conjuguées
(Théorème 2.5), ou pour qu’une sous-catégorie soit c-réflective (Théorème 2.7).

On établit une application bijective entre la classe Rc des sous-catégories
c-réflectives et la classe Re(Π,Γ0) des sous-catégories réflectives qui se con-
tiennent dans Γ0 et a le foncteur réflecteur exactement à gauche (Théorème
2.13).

On démontre que toute classe d’objects Mp-injectifs génère une sous-catégorie
c-réflective (Théorème 3.1). La sous-catégorie des espaces ultranucléaires uN
est la plus grande sous-catégorie c-réflective qui se contient dans la sous-
catégorie des espaces nucléaires N (Théorème 3.8).

2. Couples de sous-catégories conjuguées

La notion de couples de sous-catégories conjuguées a été introduite par
l’auteur [3], pour que diverses propriétés soient formulées dans les ouvrages
sans être rigoureusement démontrées.

2.1. Soit k : C2V → K et r : C2V → R un foncteur coréflecteur et un
foncteur réflecteur. Notons

µK = {m ∈Mono|k(m) ∈ Iso}, εR = {e ∈ Epi|r(e) ∈ Iso}.
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1. Soit R ∈ R et p : X → Y ∈ Epi. Alors p ∈ εR si et seulement si

rX = f · p (1)

pour un f.
2. Soit b : X → Y ∈ εR et A ∈ |R|. Alors pour tout f : X → A, on a

f = g · b (2)

pour un g.
3. a) Dans la catégorie C2V, pour tout R ∈ R, le couple (εR, (εR)⊥) est une

structure de factorisation de droite (voir [4]);
b) Le couple ((εR) ◦ Ep, ((εR) ◦ Ep)⊥) qui est noté (P′′(R), I′′(R)) est une

structure de factorisation (voir [4]).

Lemme. 1. Soit L ∈ R. Alors εL = L>.
10. Soit K ∈ K. Alors µK = K⊥.
Démonstration. εL ⊂ L>. Soit b : X → Y ∈ εL, f : A→ B ∈ L et

f · u = v · b. (3)

Si lY : Y → lY est L-réplique de Y, alors lY · b : X → lY est L-réplique de X.
Ainsi

u = g · lY · b (4)

pour un g. Des égalités écrites, il résulte que

v = f · g · lY . (5)

Ainsi b ⊥ f, et εL ⊂ L>.

X

A B

lY

Y

vu

f

b

g

l Y

L> ⊂ εL. Soit b : X → Y, b ⊥ L et lX : X → lX, lY · Y → lY L-réplique
des objets respectifs. Alors

l(b) · lX = lY · b. (6)
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Puisque b ⊥ l(b), il résulte que

lX = t · b, (7)

lY = l(b) · t (8)

pour un t. Alors
t = h · lY (9)

pour un h. Des égalités écrites, on obtient

l(b) · h · lY = l(b) · t = lY , (10)

Ou
l(b) · h = 1. (11)

X

lYlX

Y

l(b)

b

t

h

ll
YX

De l’égalité (8), on déduit que t ∈ Mu. Alors de l’égalité (7), puisque la
classe Epi est Mu-héréditaire, il résulte que b ∈ Epi. De l’égalité (7), on obtient
que t ∈ Epi, et de l’égalité (9), on obtient que h ∈ Epi. Alors de (11) on a
h, l(b) ∈ Iso. Ainsi b ∈ εL.

On démontre dualement l’égalité µK = K⊥.

2.2. Proposition. Soit K ∈ K et L ∈ R. Les affirmations suivantes sont
équivalentes pour la catégorie C2V.

1. Pour tout objet X ∈ |C2V|, le morphisme lX · kX : kX → lX est K-
coréplique de lX.

2. εL ⊂ µK.
3. L> ⊂ K⊥.
4. K ⊂ λ∗(εL).

Démonstration. 1 ⇒ 2. Soit b : X → T ∈ εL, lY : Y → lY et kX : kX →
X L-réplique et K-coréplique. Alors

lX = lY · b, (12)
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et
klX = lX · kX . (13)

Ainsi
klX = lY · b · kX . (14)

De l’égalité (14), on déduit que b · kX ∈ µK, et comme b ∈Mono, il résulte
que b ∈ µK.

lX

kX

Y

X

lb

k

l

k

Y

X

X

lX

2⇒ 3. Ainsi, de la condition 2, et la Lemme 2.1, il résulte la condition 3.
3⇒ 2. En vertu des démonstrations ci-dessus.
2⇒ 4. K ⊂ λ∗(εL). Soit A ∈ |K|, b : X → Y ∈ εL, et f : A→ Y.

A

YX

f

b

g

Puisque b ∈ εL ⊂ µK, et A ∈ |K|, il résulte que

f = b · g (15)

pour un g.
4 ⇒ 1. Soit A ∈ |C2V|, lA : A → lA L-réplique de A, et kA : kA → A et

klA : klA→ lA K-corépliques des objets respectifs. Alors

lA · kA = klA · u (16)
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pour un u. Puisque lX ∈ εL, et klA ∈ |λ∗(εL)|, il résulte que

klA = lA · h (17)

pour un h. Alors
h = kA · v (18)

pour un v. On vérifie facilement que u = v−1.

lA

klA

AkA

u

v h

k l

k

A A

lA

2.2∗. Proposition. Soit K ∈ K et L ∈ R. Les affirmations suivantes sont
équivalentes.

1. Pour tout objet X ∈ |C2V|, le morphisme lX · kX : kX → lX est L-
réplique de kX.

2. µK ⊂ εL.
3. K⊥ ⊂ L>.
4. L ⊂ λ(µK).

2.3. Remarque. La condition 1 de la Proposition 2.2, et la condition 1 de
la Proposition 2.2∗, on va l’écrire dans la variante k · l = k et respectivement
l · k = l.

2.4. Proposition. Avec les notations ci-dessus, les affirmations suivantes
sont équivalentes:

1. µK = εL.
2. K = λ∗(εL) et L = λ(µK).

Démonstration. 1 ⇒ 2. K = λ∗(εL). Il est suffisant de démontrer que
λ∗(εL) ⊂ K. Soit A ∈ |λ∗(εL)|, lA : A → lA et klA : klA → lA L-réplique et
K-coréplique des objets respectifs. Puisque klA ∈ µK = εL et A ∈ |λ∗(εL)|, il
résulte que

lA = klA · h (19)

pour un h. De l’égalité écrite, il résulte que h ∈ εL = µK. Donc h ∈ Iso.
L = λ(µK). Démonstration duale.
2 ⇒ 1. En vertu des Propositions 2.2 et 2.2∗ (équivalentes des points 2 et

4).
2.5. Des propositions 2.2 et 2.2∗ on formulera le résultat suivant.
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Théorème. Soit K ∈ K et L ∈ R. Les affirmations suivantes sont équivalentes:
1. µK = εL.
2. a) k · l = k; b) l · k = l.
3. K⊥ = L>.
4. a) K = λ∗(εL); b) L = λ(µK)).

2.6. Définition. Soit A une sous-catégorie pleine de la catégorie C2V,K
(respectivement: L) une sous-catégorie coréflective (respectivement: réflective)
de la catégorie A. (K,L) se nomme couple de sous-catégories conjuguées de
la catégorie A si A ∩ µK = A ∩ εL.

Dans ce cas, K (respectivement: L) se nomme sous-catégorie c-coréflective
(respectivement: c-réflective) de la catégorie A, et K et L se nomment con-
juguées l’une à l’autre.

Utilisons les notions suivantes:
Pc(A) (respectivement: Pc) la clase des sous-catégories conjuguées de la

catégorie A (respectivement: C2V).
Kc(A) (respectivement: Kc) la classe des sous-catégories c-coréflectives de

la catégorie A (respectivement: C2V).
Rc(A) (respectivement: Rc) la classe des sous-catégories c-refléctives de la

catégorie A (respectivement: C2V).

2.7. Théorème. Soit L ∈ R. Les affirmations suivantes sont équivalentes:
1. L ∈ Rc.
2. ((εL)>, εL) est une structure de factorisation de gauche.
3. La classe εL est stable à gauche.
4. S ⊂ L et l(Mp) ⊂Mp.
5. S ⊂ L et l(Mf ) ⊂Mf .
6. S ⊂ L et le foncteur l est exactement à gauche.
7. S ⊂ L et le foncteur l commute avec des carrés cartésiens.
8. S ⊂ L et le foncteur l commute avec des limites projectives.
9. S ⊂ L et l(I′′(R)) ⊂ I′′(R) pour tout R ∈ R(L).
10. S ⊂ L, et pour tout R ⊂ R(L), le couple (P′′(R) ∩ (εL)>, I′′(R) ◦ (εL))

est une structure de factorisation dans la catégorie C2V.
11. Le foncteur l possède un adjoint à gauche.

Démonstration. On démontrera les implications suivantes

1

8

3 92

211

4 5 6 7 8

10

1⇒ 2. Puisque εL = µK, et ((µK)>, µK) est une structure de factorisation
de gauche (voir [4], Théorème 2.12∗).

2⇒ 3. Evidemment.
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5⇔ 6. Dans la catégorie C2V, on a Mf = Ker(C2V).
6⇔ 7⇔ 8. Un foncteur réflecteur dans la catégorie C2V commute avec les

produits ([6], Théorème 1.12), et les noyaux peuvent être construits à l’aide
des produits et des carrés cartésiens, et inversement.

1⇔ 11. Soit (K,L) ∈ Pc, et on va démontrer que le foncteur k : C2V→ C2V

est un adjoint à gauche du foncteur l : C2V → C2V. Soit X,Y deux objets de
la catégorie C2V, et on établira les isomorphismes fonctoriels (voir [9], cap. 1,
§1)

Hom(kX, Y )
ϕ→ Hom(X, lY )

ψ→ Hom(kX, Y ),

en notant pour f : kX → Y et g : X → lY

ϕ(f) = l(f) · lX , ψ(g) = kY · k(g).

kl =kXX

klY=kY

lX=lkX

lY=lkY

X

Y

f
l(f)k(f) l(g)k(g)

g

k l

k l

Y Y

X X

On a

ψϕ(f) = ψ(l(f)·lX) = kY ·k(l(f)·lX) = kY ·kl(f)·k(lX) = kY ·k(f)·1 = kY ·k(f) = f,

ϕψ(f) = ϕ(kY ·k((g)) = l(kY ·k(g))·lX = l(kY )·lk(g)·lY = 1·l(g)·lX = l(g)·lX = g.

11 ⇒ 8. En vertu du Théorème P. Freyd (voir [9], Théorème 3.13). Un
foncteur qui possède un adjoint à gauche commute avec les limites projectives.

9⇒ 4. Puisque Mp = I′′(S), et S ⊂ L.
4⇒ 5. Soit m : X → Y ∈Mf . Examinons le carré commutatif

l(m) · lX = lY ·m. (20)

Alors l(m) ∈ Mp. Puisque m(X) est un ensemble fermé dans l’espace Y, et
Y et lY sont compatibles avec la même dualité, il résulte que m(X) est un
ensemble fermé dans lY (voir [14], cap. IV, §2, Théorème 1). Ainsi l(m) a
une image fermée. Donc l(m) ∈Mf .

8⇒ 2. Puisque le foncteur l : C2V→ L commute avec les produits, il résulte
que la classe εL est fermée par rapport aux produits. Démontrons qu’elle est
stable à gauche et fermée par rapport aux intersections. Soit b : X → Y ∈ εL,
et

b · f ′ = f · b′ (21)
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est un carré cartésien. Examinons l’image de ce carré en utilisant le foncteur
l :

l(b) · l(f ′) = l(f) · l(b′) (22)

En vertu de l’hypothèse 8, le carré (22) est cartésien et l(b) ∈ Iso. Donc
l(b′) ∈ Iso aussi. Puisque S ⊂ L, il résulte que εL ⊂ εS. Donc b′ ∈ Eu et
b′ ∈ εL.

P Z

Y

lP lZ

lX lY

X

f
l(f )

l(b )

f

b

l(f)

l(b)

b

l

l

l

lP

Y

X

Z

/

/

/

/

Vérifions que la classe εL est fermée par rapport aux intersections.
Soit {bi : X → X|i ∈ I} une famille de (εL)-sous-objets de l’objet X, et

{pi : X̄ → Xi|i ∈ I} et b : X̄ → X la limite projective du spectre respectif.
Alors

bi · pi = b, ∀i ∈ I. (23)

Puisque bi ∈ Eu ∩Mu, il résulte que b ∈ Eu ∩Mu. En utilisant le foncteur l, on
obtient que l(bi) ∈ Iso, ∀i ∈ I, et {l(pi)|i ∈ I} et l(b) est la limite projective
du spectre respectif. Donc l(b) ∈ Iso.

X lX

X lXX lX

p l p( )b l b( )

b l b( )

i i

i
i i

i

_ _

Les propriétés démontrées ci-dessus sont suffisantes pour que ((εL)>, εL)
soit une structure de factorisation de gauche (voir [1], sec.14).

2⇒ 1. En factorisant conformément à la structure ((εL)>, εL) σX : σX →
X Σ-corépliques ou mX : mX → X M̃-coréplique de l’objet X, on obtient
une sous-catégorie (εL)-coréflective K. Puisque mlX = mX, il résulte que
klX = kX, et l’égalité lkX = lX est déduite du fait que lX · kX ∈ εL.
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2⇒ 10. Examinons la structure de factorisation (P′′(R), I′′(R)), et la struc-
ture de factorisation de gauche ((εL)>, εL). Puisque R ⊂ L, la classe P′′(R) est
(εL)-héréditaire en vertu du Théorème 3.2∗ [4], déduisons que
(P′′(R) ∩ (εL)>, I′′(R) ◦ (εL)) est une structure de factorisation.

10 ⇒ 3. Examinons le cas R = S. Alors I′′(R) = I′′(S) = Mp et la class
Mp ◦ (εL) est stable à gauche. Démontrons que la classe εL est aussi stable à
gauche. Soit b ∈ εL, et

f · b′ = b · f ′ (24)

est un carré cartésien. Alors b′ ∈ Mp ◦ (εL), et b′ ∈ Eu, puisque εL ⊂ εS =
Eu ∩Mu. Donc b′ ∈ εL.

3⇒ 9. Soit R ∈ R et R ⊂ L. Notons (P, I) = (P′′(R), I′′(R)). Ainsi P′′(L) ⊂
P. Soit i : X → Y ∈ I. Alors

l(i) · lX = lX · i, (25)

Démontrons que P ⊥ l(i). Soit e : P → T ∈ P et

v · e = l(i) · u (26)

Construisons les carrés cartésiens sur les morphismes v et lX

v · t′ = lY · v′, (27)

sur les morphismes e et t′

e · t′′ = t′ · e′, (28)

sur les morphismes u · t′′ et lX

(u · t′′) · t′′′ = `X · f. (29)

La classe εL est stable à gauche (hypothèse 3). Donc t′, t′′, t′′′ ∈ εL. Dans
l’égalité (28) t′′ ∈ εL ⊂ εR ⊂ P, ou t′ · e′ ∈ P, et t′ ∈ Mu. La classe P est
Mu-héréditaire, ainsi e′ ∈ P et e′, t′′′ ∈ P. On a

lY · v′ · e′ · t′′′ = v · t′ · e′ · t′′′ = v · e · t′′ · t′′′ = l(i) · u · t′′ · t′′′ · `Y · i · f,

i.e.
lY · v′ · e′ · t′′′ = lY · i · f

en simplifiant lY , il reste
v′ · e′ · t′′′ = i · f. (30)

Dans la dernière égalité, e′ · t′′′ ∈ P et i ∈ I, i.e. e′ · t′′′ ⊥ i. Il y a un morphisme
h, ainsi que

f = h · e′ · t′′′, (31)
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i · h = v. (32)

Plus loin, lY ∈ εL, donc t′ ∈ εL et lY ∈ |L|. Ainsi

lX · h = w · t′ (33)

pour un w. On a

l(i) · w · t′ = l(i) · lX · h = lY · i · h = lY · v′ = v · t′,

i.e.
l(i) · w · t′ = v · t′ (34)

ou
l(i) · w = v. (35)

La dernière égalité montre que e ⊥ l(i).

P P

P T

P

lX lY

YX

f

u v

l i( )

w

t

v

et

t

h

l l

3 2 1

X Y

/

/

////

//

2.8. Remarque. La condition S ⊂ L dans p.10 est nécessaire, puisque
εΠ = Epi ∩Mu, et Mp ◦ (εΠ) = Mu. Mais la sous-catégorie Π n’est pas c-
réflective.

2.9. Théorème. Soit R ∈ R et S ⊂ R. Alors il existe la plus grande
sous-catégorie c-réflective qui se contient en R.

Démonstration. Soit A la classe de toutes les sous-catégories c-réflectives
qui se contiennent en R. Alors S ∈ A, et pour tout L ∈ A on a εR ⊂ εL.
La classe B = ∩{εL|L ∈ A} est une classe bicomplète, λ(B) est une sous-
catégorie c-réflective et λ(B) ⊂ R. On vérifie facilement que λ(B) est la plus
grande sous-catégorie c-réflective qui se contient en R.

2.10. Soit R ∈ R, et A une sous-catégorie de la catégorie C2V. Notons
par r(A) la catégorie pleine de tous les objets isomorphes à des objets avec la
forme rX, quand X ∈ |A|.
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Lemme. Soit R une sous-catégorie réflective et K une sous-catégorie
coréflective de la catégorie C2V. Si M̃ ⊂ K ou S ⊂ R, alors r(K) est une
sous-catégorie coréflective de la catégorie R.

Démonstration. Soit A ∈ |R|, kA : kA → A K-coréplique de A et rkA :
kA→ rkA R-répliqie de kA. Alors

kA = pA · rkA (36)

pour un morphisme pA : rkA → A. Montrons que pA est une coréplique de
l’objet A. Examinons la construction respective pour l’objet B ∈ |R|, et soit
f : rkB → A. Alors

f · rkB = kA · g (37)

pour un g et
rkA · g = h · rkB (38)

pour un h. Des égalités écrites, on obtient:

pA · h · rkB = pA · rkA · g = kA · g = f · rkB,

i.e.
pA · h · rkB = f · rkB, (39)

ou
pA · h = f. (40)

rkB

A B

rkAkA kB
h

g

fk k

p p

r r

A B

A B

kA kB

On a démontré ainsi que le morphisme f se factorise par pA. L’unicité de
cette factorisation a lieu dans les deux cas indiqués.

Le cas M̃ ⊂ K. Alors kA ∈ Eu ∩ Mu, et rkA ∈ Epi. La classe Mu est
Epi-cohéréditaire. Donc pA ∈Mu.

Le cas S ⊂ R. Puisque kA et rkA sont des applications bijectives de l’égalité
(36), il résulte que pA est aussi bijectif.
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2.11. Théorème. Soit R ∈ R, (K,L) ⊂ Pc, et l(R) ⊂ R. Alors R ∩
µ(r(K)) = R ∩ ε(r(L)). En particulier, (r(K), r(L)) est un couple de sous-
catégories conjuguées de la catégorie R.

Démonstration. Mentionnons que R ∩ L est une sous-catégorie réflective
de la catégorie R. Plus loin, de la condition l(R) ⊂ R, il résulte que pour
tout objet A ∈ |R| lA : A → lA est aussi (R ∩ L)-réplique. Observons que la
condition l(R) ⊂ R a lieu dans les conditions suivantes:

- L ⊂ R;
- R est fermé par rapport à (εL)-facteur-objets, c’est-à-dire R ∈ Rf (εL)

(voir [5]).
R∩µ(r(K)) ⊂ R∩ ε(rL)). Soit b : X → Y ∈ R∩µ(r(K)). Si pX : rkX → X

est r(K)-coréplique de X, alors b · pX : rkX → Y est r(K)-coréplique de Y.
De l’égalité (36), point précédent, il résulte que b · pX ∈ µK. Comme µK =

εL, on a b · pX ∈ R ∩ ε(L) = R ∩ ε(r(L)).
R ∩ ε(r(L)) ⊂ R ∩ µ(r(K)). Soit b : A → B ∈ R ∩ ε(r(L)). Donc b ∈

R ∩ ε(L) = R ∩ µ(K) = R ∩ µ(r(K)).

2.12. Corollaire. 1. Soit R ∈ Rf (εS). Alors pour tout (K,L) ∈ Pc,
(r(K), r(L)) ∈ Pc(R).

2. Pour tout (K,L) ∈ Pc, (rs(K), rs(L)) ∈ Pc(sR), où sR est la sous-
catégorie des espaces semi-réflexifs, et rs : C2V→ sR est le foncteur réflecteur.

3. Soit iR la sous-catégorie des espaces inductifs semi-réflexifs, et
ri : C2V → iR le foncteur réflecteur, et Sh la sous-catégorie des espaces
Schwartz (voir [2]). Pour (K,L) ∈ Pc, si Sh ⊂ L, alors (ri(K), ri(L)) ∈
Pc(iR).

2.13. Soit Re(Π,Γ0) = {R ∈ R|Π ⊂ R ⊂ Γ0 et r(Mf ) ⊂ Mf}, c’est-
à-dire Re(Π,Γ0) contient les sous-catégories réflectives qui s’incluent dans la
sous-catégorie Γ0, et ont le foncteur réflecteur exactement à gauche.

Théorème. 1. Application R 7→ ϕ(R = SMp(R) pour R ∈ Re(Π,Γ0) prend
des valeurs dans la classe Rc.

2. Application L 7→ ψ(L) = L ∩ Γ pour L ∈ Rc prend des valeurs dans la
classe Re(Π,Γ0).

3. Les applications ϕ et ψ sont réciproquement inverses

Re(Π,Γ0)
ϕ→ Pc

ψ→ Re(Π,Γ0).

Démonstration. 1. Soit R ∈ Re(Π,Γ0) et L = SMp(R). Démontrons que le
foncteur réflecteur l : C2V → L est exactement à gauche. Soit m : X → Y ∈
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Mf , r
X : X → rX et rX : Y → rY R-répliques des objets X et Y. Alors

r(m) · lX = lY ·m. (41)

Soit
lX = iX · pX , (42)

lY = iY · pY , (43)

(Eu,Mp)-fonctorisation des morphismes respectifs. Alors pX et pY sont L-
répliques des objets respectifs, et

u · pX = pY ·m, (44)

iY · u = r(m) · iX (45)

pour un morphisme u. Il est évident que u = l(m). De l’égalité (45), puisque
r(m), iX ∈ Mp, il résulte que u ∈ Mp. X a l’image fermée en Y. Donc pX a
l’image fermée en pY.

Donc u ∈Mf . On a démontré ainsi que ϕ(R) ∈ Pc.

X

Y rY

pX rX

pY

r m( )u=l m( )m

p i

ip

r

r

Y Y

XX

X

Y

Démontrons que ψ prend des valeurs dans la classe Re(Π,Γ0).
Premièrement, vérifions que Γ0 ∈ Re(Π,Γ0). Soit m : X → Y ∈ Mf , g

X
0 :

X → g0X, et gY0 : Y → g0Y Γ0-répliques des objets respectifs. Alors

g0(m) · gX0 = gY0 ·m. (46)

Puisque gY0 ,m ∈ Mp, il résulte que g0(m) · gX0 ∈ Mp. Ayant en vue que la
classe Mp est Epi-cohéréditaire, décidons que g0(m) ∈Mp. Et g0X et g0Y sont
des espaces complets. Donc g0(m) a une image fermée. Donc g0(m) ∈Mf .

Plus loin, tout élément de la classe Rc est fermé par rapport aux extensions:
(Epi ∩Mp)-facteur-objets (voir [6], Théorème 3.7). Ainsi, si L ∈ Rc, alors
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g0 · l : C2V → L ∩ Γ0 est le foncteur réflecteur. Donc, si m ∈ Mf , alors
l(m) ∈Mf et g0l(m) ∈Mf .
ϕ ·ψ = 1. Résulte du fait que g0 · l : C2V→ L∩Γ0 est le foncteur réflecteur.
ψ · ϕ = 1. Revenons au diagramme précédent.

Une fois que iX : pX → X ∈Mp et rX ∈ |Γ0|, il résulte que iX est Γ0-réplique
de pX.

2.14. Corollaire. Rc(Π,Γ0) n’est pas un ensemble. Re(Π,Γ0) contient
une classe propre d’éléments. (voir Théorème 3.3).

2.15. Théorème. Soit (K,L) ∈ Pc. Alors
1. Les catégories K et L sont isomorphes.
2. Les catégories K et L sont semi-abeliennes au sens de Räıcov.

Démonstration. 1. Rezulte de la Définion 2.6.
2. Soit U(L) = {lX |X ∈ |C2V|}. La classe des conoyaus de la catégorie

C2V(respectivement: L) Cok (respectivement: CokL) vérifie les relations
CokL ⊂ U(L) ◦ Cok ⊂ (εL) ◦ Cok. La classe (εL) ◦ Cok est stable tant à
gauche qu’à droite. De telle manière on vérifie que L est semi-abelien.

3. Exemples

3.1. Théorème. Soit A une famille d’objets Mp-injectifs de la catégorie
C2V. Alors SMpP (A) est une sous-categorie c-réflective.

Démonstration. Soit L = SMpP (A), l : C2V → L le foncteur réflecteur, et
montrons que l(Mp) ⊂Mp. Vraiment, soit m : X → Y ∈Mp. Alors

l(m) · lX = lY ·m. (47)

Il existe un objet Z ∈ |P (A)| et un morphisme i : lX → Z ∈ Mp. Puisque Z
est Mp-injectif et m ∈Mp, on a

i · lX = f ·m (48)

pour un f. Et Z ∈ |L|. Donc
f = g · lY (49)

pour un g. Ainsi

g · l(m) · lX = g · lY ·m = f ·m = i · lX ,

i.e.
g · l(m) · lX = i · lX , (50)
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ou
g · l(m) = i. (51)

De l’égalité (51), puisque i ∈Mp, il résulte que l(m) ∈Mp.

X

Y

lX Z

lY

g
l m( )m

l

il

f

Y

X

3.2. Soit X une ensemble de puissance α, et mα l’espace Banach des fonc-
tions bornées définies sur X. Alors mα est un espace Mp-injectif [12].

Corollaire [10]. Pour tout cardinal τ , le foncteur réflecteur
rτ : C2V→ SMpP (mτ ) est exactment à gauche.

3.3. Soit α et β deux cardinales, β > α et β > X0. Alors mβ n’appartient
pas à la sous-catégorie SMpP (mα) ([7], Théorème 2.14).

Théorème. Pc,Kc et Rc sont des classes propres.

3.4. Corollaire. SMpP (K) = S, où K est le corps des nombres réels ou
complexes.

3.5. Théorème [10]. Soit L = SMpP (mα) et K la conjuguée pour L. Si
X ∈ |C2V|, alors la topologie sur kX est une topologie de la convergeance uni-
forme sur tous les ensemples absolument convexes faiblement compacts dans
X ′ pour lequel tout sous-ensemple de puissance ≤ α est équicontinu sur X.

3.6. Dans les ouvrages [8, 11], on a défini et étudié les espaces ultra-
nucléaires qui forment une sous-catégorie réflective de la catégorie C2V avec le
foncteur réflecteur u : C2V→ uN.

Soit tN la topologie nucléaire associée à la topologie normée à l’espace
Hilbert `2, c’est-à-dire (`X , tN) est N-réplique de l’espace `2, où N est la
sous-catégorie des espaces nucléaires. Tenant compte des notations ci-dessus,
écrivons le Théorème 4 [8].

Théorème. uN = SMpP (`2, tN).

3.7. Là encore, on affirme que le foncteur réflecteur u : C2V → uN admet
un adjoint à gauche. Alors du Théorème 2.7, il résulte.



40 Botnaru Dumitru

Théorème. uN ∈ Rc.

3.8. Théorème. uN est la plus grande sous-catégorie c-réfective qui se
contient dans la sous-catégorie N.

Démonstration. Mentionnons que si L est une sous-catégorie c-réflective et
L ⊂ SMpP (A) pour un objet A, alors L = SMpP (lA). Soit, maintenant, L

une sous-catégorie c-réflective, et uN ⊂ L ⊂ N. Alors N ⊂ SMpP (B) pour

tout espace Banach B infini dimensionnel [15]. Donc N ⊂ SMpP (`2). Pour

l’objet `2 et N-réplique, L-réplique et uN-réplique, on a les relations suivantes:
`2 → n`2 → l `2 → u`2 = n`2. Donc L = uN.

3.9. Soit Sh sous-catégorie des espaces Scwartz. Sh est une sous-catégorie
réflective, on notera le foncteur réflecteur par sh : C2V→ Sh. Si c0 est l’espace
Banach des séries qui convergent à zéro, alors Sh-réplique de c0 shc0 est un
objet universel pour Sh : Sh = SMpP (shc0) [13], et le foncteur réflecteur sh
est exactement à gauche [2]. Soit Ch la conjuguée de la sous-catégorie Sh au
foncteur coréflecteur ch : C2V→ Ch. Pour tout objet X ∈ |C2V|, chX possède
la topologie de la convergeance uniforme de toutes les ensembles faiblement
compactes A de X ′ avec la propriété: si la suite (x′n) converge à zero dans
Banach espace X ′A, alors elle est équicontinue dans X ′ [10].

Théorème. (Ch, Sh) ∈ Pc.

Autres propriétés des foncteurs sh : C2V→ Sh et ch : C2V→ Ch (voir [5]).
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[1] Adámek J., Herrlich H., Strecker G.E., Abstract and Concrete Categories - the joy of
cats. Dover Publications, New York, 2004.

[2] Berezansky J.A., Les espaces inductivement réflexifs localement convexes, Dokl.
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[8] Brudovsky B.S., La topologie nucléaire associée, application du type s et les espaces
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1. INTRODUCTION

In the present article we examine the problem of the stability in the Lya-
punov sense of the plane Newtonian problem formulated by the academician
E.A. Grebenicov. Assume that in three-dimensional inertial space Oxyz we
have (n+ 1) bodies that attract each other according to the universal attrac-
tion law. Then the vectorial form of the differential equations describing the
motion of these bodies is the following (see [1]):

mi~̈ri =
−−−−→
gradiU, i = 0, 1, ..., n, (1)

where
−−→
OP i = −→r i = (xi, yi, zi, ) are the radius of the vectors, and the scalar-

potential function U is expressed by the relation:

U (x0, y0, z0, ..., xn, yn, zn) =
f

2

n∑
k=0

n∑
i=0

′ mkmi

∆ki
, (2)

∆ki =

√
(xk − xi)2 + (yk − yi)2 + (zk − zi)2, (3)

f is the gravitational constant, and the sign
′

in sums stands for k 6= i. The

vector
−−−−→
gradiU is the usual gradient one. Written in coordinate form, the

equalities (1) represents a system of nonlinear differential equations of the
order (6n+ 6): 

mi
d2xi
dt2

= ∂U
∂xi
,

mi
d2yi
dt2

= ∂U
∂yi
,

mi
d2zi
dt2

= ∂U
∂zi
,

i = 0, 1, 2, ..., n.

(4)

43
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As a restricted of n-body problem we understand the case when one of the
bodies does not fulfill the Third Law of Newtonian dynamics. That implies
the existence of an infinitely small mass: one of the masses m0,m1, ...,mn is
infinitely small and it does not attract other masses, but these attract them.
Replacing the infinitely small zero mass into the system (4) will result in a
similar system but of order 6n . Thus, instead of the system of differential
equations of the Newtonian (n+1) body problem, we will obtain the differential
equations of the Newtonian problem in the n bodies. Thus, after we equate
with zero of one of the masses m0,m1, ...,mn in equations (4), the differential
equations describing the motion of the infinitely small mass are not obtained.
We will write the system (4) in a more detailed form, highlighting, for example,
the differential equations of the mass m0:

m0
d2x0
dt2

= ∂U
∂x0

= fm0

n∑
k=1

mk
xk−x0

∆3
k0
,

m0
d2y0

dt2
= ∂U

∂y0
= fm0

n∑
k=1

mk
yk−y0

∆3
k0
,

m0
d2z0
dt2

= ∂U
∂z0

= fm0

n∑
k=1

mk
zk−z0
∆3
k0
,

(5)



mi
d2xi
dt2

= ∂U
∂xi

= fmi

(
n∑
k=1

′
mk

xk−xi
∆3
ki

+m0
x0−xi

∆3
0i

)
,

mi
d2yi
dt2

= ∂U
∂yi

= fmi

(
n∑
k=1

′
mk

yk−yi
∆3
ki

+m0
y0−yi
∆3

0i

)
,

mi
d2zi
dt2

= ∂U
∂zi

= fmi

(
n∑
k=1

′
mk

zk−zi
∆3
ki

+m0
z0−zi
∆3

0i

)
,

i = 1, 2, ..., n, k 6= i.

(6)

Since the mass m0 is small but not identical zero, we can divide both sides
of system (5) by m0. Moreover, since m0 = µ, 0 < µ << 1, in a first
approximation we can replace in system (6) m0 by 0. We obtain the following
systems: 

d2x0
dt2

= f
n∑
k=1

mk
xk−x0

∆3
k0
,

d2y0

dt2
= f

n∑
k=1

mk
yk−y0

∆3
k0
,

d2z0
dt2

= f
n∑
k=1

mk
zk−z0
∆3
k0
,

(7)
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d2xi
dt2

= f
n∑
k=1

′
mk

xk−xi
∆3
ki
,

d2yi
dt2

= f
n∑
k=1

′
mk

yk−yi
∆3
ki
,

d2zi
dt2

= f
n∑
k=1

′
mk

zk−zi
∆3
ki
,

i = 1, 2, ..., n, k 6= i.

(8)

Analyzing the systems (7) and (8), we notice that the second one does not
contain the coordinates x0, y0, z0 of the infinitely small mass. The system (8)
describes the motion in the Newtonian n-body problem with the respective
masses equal to m1,...,mn. We admit that one of the particular solutions of
the system (8) has been determined:

xk(t) = fk(t),
yk(t) = ϕk(t),
zk(t) = ψk(t),
k = 1, 2, ..., n.

(9)

By replacing these functions in the system (7) we obtain:

d2x0
dt2

= f
n∑
k=1

mk
fk(t)−x0

∆3
k0

,

d2y0

dt2
= f

n∑
k=1

mk
ϕk(t)−y0

∆3
k0

,

d2z0
dt2

= f
n∑
k=1

mk
ψk(t)−z0

∆3
k0

,

∆2
k0(t) = (fk(t)− x0)2 + (ϕk(t)− y0)2 + (ψk(t)− z0)2 .

(10)

The system (10) describes the motion of the infinitely small mass m0 = µ in
the gravitational field of the masses m1,m2, ...,mn and which moves following
the law described by the solution fk(t), ϕk(t), ψk(t). Hence the motion of the
infinitely small mass in any restricted n-body problem may be described by a
non-autonomous system of the sixth differential equations.

In the case of a plane solution z0 = z1 = ... = zn ≡ 0, it will be investigated
a fourth-order system, not that of the sixth order:

d2x0
dt2

= f
n∑
k=1

mk
fk(t)−x0

∆3
k0

,

d2y0

dt2
= f

n∑
k=1

mk
ϕk(t)−y0

∆3
k0

,

∆2
k0(t) = (fk(t)− x0)2 + (ϕk(t)− y0)2 .
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Fig. 1: Studied model

So we can state the following theorem:

Theorem 1.1. Any known particular solution to the Newtonian problem of
the n bodies serves as a generator of differential equations of motion in the
restricted Newtonian problem of (n+ 1) bodies.

2. DIFFERENTIAL EQUATIONS OF THE
RESTRICTED PROBLEM OF EIGHT BODIES.
DETERMINATION OF EQUILIBRIUM
POSITIONS.

From the above mentioned facts, it follows that in studying of the differ-
ential equations of restricted problems, first of all it is necessary to study the
existence of particular solutions of ,,equilibrium positions” in the unlimited
small size problems. If the origin of the three-dimensional Euclidean space
it will be chosen one of the bodies that gravitates, for example the point P0,
then, obviously, the Euclidean coordinate system P0xyz will be non-inertial.

Assume that in a non-inertial space P0xyz there is the motion of eight bod-
ies P0, P1, P2, P3, P4, P5, P6, P with the masses m0, m1, m2, m3, m4, m5, m6,
µ, which attract each other in accordance with the law of universal attrac-
tion . We will investigate the planar dynamic pattern formed by a square
in the vertices of which are placed the bodies P1, P2, P3, P4. The body P0
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is the center of the square and the bodies P5, P6 are placed on the diagonal
P1P3 of the square at equal distances from P0 (see Fig.1). We consider that
m5 = m6 and the configuration rotates around the body P0 with the constant
angular velocity ω, which is determined from the model parameters . It will
be studied the motion of the infinitely small mass µ = 0 (the so-called pas-
sive gravitational body) in the gravitational field formed by the seven bodies
P0, P1, P2, P3, P4, P5, P6, that attract each other and attract the body P.

In the case of restricted 3-body problem H. Poincaré has demonstrated that
the differential equations of dynamics of the point P form a non-integrable sys-
tem. The Hamiltonian equations of the restricted problem of eight bodies have
an even more complicated structure, that’s why they can also be considered
as non-integrable in sence of Poincaré. The differential equations of the New-
tonian problem of eight bodies in a non-inertial cartesian coordinate system
P0xyz have the form: 

d2xk
dt2

+ f(m0+mk)xk
r3
k

=
∂R∗k
∂xk

,

d2yk
dt2

+ f(m0+mk)yk
r3
k

=
∂R∗k
∂yk

,

d2zk
dt2

+ f(m0+mk)zk
r3
k

=
∂R∗k
∂zk

,

k = 1, 2, ..., 7;

(11)

where R∗k(k = 1, 2, ..., 7) are the perturbation functions which are expressed
by the relations:

R∗k = f
6∑
j=1

mj

(
1

∆kj
− xkxj+ykyj+zkzj

r3
j

)
, j 6= k,

∆2
kj = (xj − xk)2 + (yj − yk)2 + (zj − zk)2 ,

r2
j = x2

j + y2
j + z2

j ,

k = 1, 2, ..., 7.

(12)

To determine ω we will carry out coordinate transformation that would
exclude from the right-hand sites of the equations (11) the time t: xj = Xj cos (ωt)− Yj sin (ωt) ,

yj = Xj sin (ωt) + Yj cos (ωt) ,
zj = Zj .

(13)

Since we study the planar configuration, we have zj = 0, j = 0, 1, ..., 7. In the
new coordinates the equations (11), written only for the bodies P0, P1, P2, P3, P4, P5, P6,
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have the form:
d2Xk
dt2

= ω2Xk + 2ω dYkdt −
f(m0+mk)Xk

r3
k

+
∂R∗k
∂Xk

,

d2Yk
dt2

= ω2Yk − 2ω dXkdt −
f(m0+mk)Yk

r3
k

+
∂R∗k
∂Xk

,
(14)


R∗k = f

6∑
j=1

mj

(
1

∆kj
− XkXj+YkYj

r3
j

)
, j 6= k,

∆2
kj = (Xj −Xk)

2 + (Yj − Yk)2 ,

r2
j = X2

j + Y 2
j ,

k = 1, 2, ..., 6.

(15)

The differential equation system (14) describes the motion of the material
system of the points in the coordinate system with rotation. For its further
study, it is necessary to replace it with an equivalent system of differential
equations written in coordinates of the coordinate rotation phase space and
four-velocity gears. We canonize the equations of motion. Thus, we will first
introduce the additional variables - the unitary impulses, applying the formulas
of classical mechanics:

dX

dt
= px,

dY

dt
= py.

Then in the new phase coordinates (X,Y, px, py) the differential equations
describing the motion of the seven bodies in that system will have the standard
Cauchy form: 

dXk
dt = pkx,

dYk
dt = pky,

dpkx
dt = ω2Xk + 2ωpky − f(m0+mk)Xk

r3
k

+
∂R∗k
∂Xk

,
dpky
dt = ω2Yk − 2ωpkx − f(m0+mk)Yk

r3
k

+
∂R∗k
∂Xk

,

k = 1, 2, ..., 6.

(16)

As the stationary points of the system (16) are searched, then according to
their definition, they must be solutions of the system of functional equations:

pkx = 0, pky = 0,

ω2Xk + 2ωpky − f(m0+mk)Xk
r3
k

+
∂R∗k
∂Xk

= 0,

ω2Yk − 2ωpkx − f(m0+mk)Yk
r3
k

+
∂R∗k
∂Xk

= 0,

k = 1, 2, ..., 6.

(17)

So the determination of the stationary solutions, the equilibrium points, of the
Newtonian problem of the seven bodies (14) is reduced to the establishment
of all real solutions of the nonlinear system of functional equations (17). This
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system is equivalent to the system of algebraic equations: ω2Xk + f(m0+mk)Xk
r3
k

+
∂R∗k
∂Xk

= 0,

ω2Yk + f(m0+mk)Yk
r3
k

+
∂R∗k
∂Xk

= 0,
(18)

which is made up of 12 algebraic equations and has 20 unknowns, if we consider
as unknowns the coordinates Xk, Yk of the gravitating bodies, their masses m0,
m1, m2, m3, m4, m5, m6, and the angular velocity ω of the coordinate sys-
tem. In these conditions, the problem of determining the stationary solutions
of the Newtonian problem of several bodies becomes, from one point of view,
incorrect, and from the other point of view admits multiple aspects and inter-
pretations in its study. As a most simple case we consider that the coordinates
of the bodies, the geometric parameters of the configuration, are known and
then the mathematical problem is essentially simplified: the system (18) be-
comes a linear algebraic system with respect to the masses m0, m1, m2, m3,
m4, m5, and for solving it we can apply the methods of linear algebra. In
our case, not all the coordinates of the bodies are known and the system (18)
becomes non-linear with respect to the unknown coordinates.

To simplify the studied problem, we consider P1(1, 1), P2(−1, 1),
P3(−1,−1), P4(1,−1), P5(α, α), P6(−α,−α), f = 1, m0 = 1, m5 = m6. Then,
replacing these data in the system (18) and solving it, by applying the symbolic
calculus system Mathematica, we obtain:

m1 = m3, m2 = m4 = f1 (m1, α) ,

m5 = m6 = f2 (m1, α) , ω2 = f3 (m1, α) . (19)

Theorem 2.1. The verification of relations (19) represents the sufficient con-
dition of existence of the homographic solution of the Newtonian problem of
seven bodies, the its configuration of which represents a square P1P2P3P4 with
one of the bodies (P0) located in the origin of the coordinates, and the other
two P5, P6 are located of the diagonal P1P3.

The functional dependences m2 = m4 = f1 (m1, α), m5 = m6 = f2 (m1, α),
ω2 = f3 (m1, α) can be seen from graphs obtained with the graphical package
of Mathematica (see Fig. 2–4).

Intervals of admissible values for the parametr α are determined by the con-
ditions m2 = m4 > 0, m5 = m6 > 0 and ω2 > 0. In the Table 1 are displayed
the admissible intervals of α according to some values of m1, approximately
calculated using the graphical tools of Mathematica.

Let’s study the motion of the body P7(x7, y7, z7) which gravitates passively
in the field of other bodies. In the studied model m7 = µ and we can assume
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Fig. 1. Representation of the functional dependence m4 = f1 (m1, α)

Fig. 2. Representation of the functional dependence m6 = f2 (m1, α)

that µ = 0. For simplicity it will be considered further P7(x7, y7, z7) ≡ P (x, y, z).
Then the equations of the point motion P (x, y, z) have the form:
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Fig. 3. Representation of the functional dependence ω2 = f3(m1, α)

Table 1 The admissible intervals for α

m1 Intervals allowed for α

0.0001 ———————–

0.001 ———————–

0.01 (0.8582; 0.85857)

0.1 (0.715; 0.718)

1 (0.48965; 0.5053)

10 (0.291; 0.320)

100 (0.149; 0.2871)

1000 (0.050; 0.2838)



d2x
dt2

+
fm0x
r3 = ∂R

∂x
,

d2y
dt2

+
fm0y
r3 = ∂R

∂y
,

d2z
dt2

+
fm0z
r3 = ∂R

∂z
,

(20)
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where 
R = f

6∑
j=1

mj

(
1

∆kj
− xxj + yyj + zzj

r3
j

)
,

∆2
j = (xj − x)2 + (yj − y)2 + (zj − z)2 ,

r2
j = x2

j + y2
j + z2

j , r
2 = x2 + y2 + z2.

(21)

The system (20) is non-autonomous. Performing the transformation x = X cos (ωt)− Y sin (ωt) ,
y = X sin (ωt) + Y cos (ωt) ,
z = Z.

(22)

we obtain an autonomous system of differential equations

d2X
dt2

= ω2X + 2ωdY
dt
− fm0X

r3 + ∂R
∂X

,

d2Y
dt2

= ω2Y − 2ωdX
dt
− fm0Y

r3 + ∂R
∂Y

,

d2Z
dt2

+
fm0Z
r3 = ∂R

∂Z
,

(23)

where 
R = f

6∑
j=1

mj

(
1

∆kj
− XXj + Y Yj + ZZj

r3
j

)
,

∆2
j = (Xj −X)2 + (Yj − Y )2 + (Zj − Z)2 ,

r2
j = X2

j + Y 2
j + Z2

j , r
2 = X2 + Y 2 + Z2,

j = 1, 2, ..., 6,

(24)

and (Xj , Yj , Zj) are the previously determined coordinates of the bodies P1, P2, P3, P4,
P5, P6. We have Zj = 0.We will introduce the new phase coordinates x, y, z, u, v, w
where 

x = X, y = Y, z = Z,

dx
dt

= u,
dy
dt

= v, dz
dt

= w,
(25)



On the Restricted Eight Bodies Problem 53

to bring the system (23) to the normal Cauchy form. Thus in the new coor-
dinates the system (23) has the form:

dx
dt

= u,
dy
dt

= v, dz
dt

= w,

du
dt

= ω2x+ 2ωv − fm0x
r3 + ∂R

∂x
,

dv
dt

= ω2y − 2ωu− fm0y
r3 + ∂R

∂y
,

dw
dt

= ∂R
∂z

.

(26)

According to the definition of the stationary solutions of the differential
equations, the equilibrium positions (in case when they exist) are solutions of
the functional system of equations:

u = 0, v = 0, w = 0,

ω2x+ 2ωv − fm0x
r3 + ∂R

∂x
= 0,

ω2y − 2ωu− fm0y
r3 + ∂R

∂y
= ∂R
∂z

= 0,

(27)

or in deployed form

u = 0, v = 0, w = 0,

ω2x+ 2ωv − fm0x
r3 − f

6∑
j=1

mj

(
x− xj

∆3
j

+
xj
r3
j

)
= 0,

ω2y − 2ωu− fm0y
r3 − f

6∑
j=1

mj

(
y − yj

∆3
j

+
yj
r3
j

)
= 0,

−fm0z
r3 − f

6∑
j=1

mj

(
z − zj

∆3
j

+
zj
r3
j

)
= 0,

(28)


∆2
j = (xj − x)2 + (yj − y)2 + (zj − z)2 ,

r2
j = x2

j + y2
j + z2

j , r
2 = x2 + y2 + z2,

j = 1, 2, ..., 6.

(29)

For simplicity as above it has been taken f = 1, m0 = 1. Replacing in
relations (28) (Xj , Yj , Zj), m2 = m4 = f1(m1, α), m5 = m6 = f2(m1, α) and
ω2 = f3(m1, α), determined above for admissible α and m1 , we obtain the
following system:
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u = 0, v = 0, w = 0,
f(x,y)=ω2x+2ωv − x

(x2+y2)
3
2

+

+m1

(
−1− x(

(1+x)2+(1+y)2
)3/2 + 1− x(

(1−x)2+(1−y)2
)3/2

)
+

+m4

(
1− x(

(1−x)2+(1+y)2
)3/2 + −1− x(

(1+x)2+(1−y)2
)3/2

)
+

+m6

(
−α− x(

(α+x)2+(α+y)2
)3/2 + α− x(

(α−x)2+(α−y)2
)3/2

)
= 0,

g(x,y)= ω2y − 2ωu− y

(x2+y2)
3
2

+

+m1

(
−1− y(

(1+x)2+(1+y)2
)3/2 +

1− y(
(1−x)2+(1−y)2

)3/2

)
+

+m4

(
1− y(

(1−x)2+(1+y)2
)3/2 +

−1− y(
(1+x)2+(1−y)2

)3/2

)
+

+m6

(
−α− y(

(α+x)2+(α+y)2
)3/2 +

α− y(
(α−x)2+(α−y)2

)3/2

)
= 0,

(30)

The system (30) is reduced to solving the following system consisting of two
irrational algebraic equations with the unknowns x, y:
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ω2x− x
(x2+y2)

3
2

+m1

(
−1− x(

(1+x)2+(1+y)2
)3/2 + 1− x(

(1−x)2+(1−y)2
)3/2

)
+

+m4

(
1− x(

(1−x)2+(1+y)2
)3/2 + −1− x(

(1+x)2+(1−y)2
)3/2

)
+

+m6

(
−α− x(

(α+x)2+(α+y)2
)3/2 + α− x(

(α−x)2+(α−y)2
)3/2

)
= 0,

ω2y − y

(x2+y2)
3
2

+m1

(
−1− y(

(1+x)2+(1+y)2
)3/2 +

1− y(
(1−x)2+(1−y)2

)3/2

)
+

+m4

(
1− y(

(1−x)2+(1+y)2
)3/2 +

−1− y(
(1+x)2+(1−y)2

)3/2

)
+

+m6

(
−α− y(

(α+x)2+(α+y)2
)3/2 +

α− y(
(α−x)2+(α−y)2

)3/2

)
= 0,

(31)

Theorem 2.2. Determining condition for the existence of the solutions of the
system (31) represents the necessary and sufficient condition for the existence
of the stationary solutions to the restricted eight body problem.

The equations in the system (31) have a rather complicated structure. Its
solving is quite cumbersome. If the solution of the system (31) will to be
determined then by adding u = v = w = 0 it would be obtained the solution
of the equilibrium position of differential equations describing the restricted
problem of the eight bodies. In order to determine the solutions of the system
(31), the graphical possibilities of Mathematica have been used. Using the
graphical package of Mathematica for different parameter values α and m1

have been constructed the graphs of the curves described by the equations in
the system (31). Obviously, the points of intersection of these curves in the
plan P0xy will be the equilibrium positions of the investigated system.

For example, for m1 = 0.01 and α = 0.8585 the graphs of these curves
are represented in Fig.5. In this graph the axis of the abscissae is the axis
P0x, the axis of the right-order P0y. The system solutions (31) represent the
intersection points of the curves in the drawing. We see that the coordinate
axes themselves verify the equations of the given system: the points of the
P0x axis of the second equation of the totality, and the points of the axes of
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Fig. 4. Representation of the curves f, g for m1 = 0.01, α = 0.8585.

the P0y - the first equation. In total we have 12 points of equilibrium. We will
name the points that are on the straight curves passing through the center
of the configuration and any peak of the square radial equilibrium position
(we will note them in the future by Ni). We will name the other points as
equilibrium bisectorial positions (we will note them in the future through Si).

In figures 5-7 are represented graphical solutions of the system (31) for
certain admissible values, previously determined, of the parameters m1 and α.

The graphical method of solving the systems gives the possibility to deter-
mine the approximate values of the equilibrium positions using the FindRoot
routine. For the aforementioned graphs the coordinates of all equilibrium
points were calculated with a fairly high accuracy. The Table 2 below con-
tains the coordinates of these points with the accuracy of up to five digits after
the comma.
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Fig. 6: Representation of the
curves f, g form1 = 0.01, α =
0.8583

Fig. 7: Representation of the
curves f, g for m1 = 0.01, α =
0.8584

Table 2 The coordinates of equilibrium points

m1 α
N1 S1

—- x∗ y∗ x∗ y∗

0.01 0.8583 1.15589 1.15589 1.39868 −0.22286

0.01 0.8584 1.15597 1.15597 1.41168 −0.12379

0.01 0.8585 1.15604 1.15604 1.41684 −0.05223

0.01 0.85853 1.15606 1.15606 1.41760 −0.03417

0.1 0.715 1.34188 1.34188 1.34865 −0.45766

0.1 0.717 1.34324 1.34324 1.44139 −0.11335

1 0.48965 1.63351 1.63351 0.93934 −1.05917

1 0.505 1.66022 1.66022 1.82285 −0.00771

10 0.291 1.84521 1.84521 2.19692 −0.00052

100 0.2 1.82945 1.82945 0.82914 −0.02594

1000 0.2 1.81083 1.81083 2.10424 −0.05038

3. ABOUT THE STABILITY AND LINEAR
INSTABILITY OF THE STATIONARY POINTS

To study the stability of the points Ni, Si by the first method of A.M.
Lyapunov it is necessary to linearize the system of the differential equation
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(26) in the neighborhood of each stationary point Ni, Si. In advance, the
equations of motion of the point that passively gravitates must be written in
the normal Cauchy form . For this we will introduce instead of the three-
dimensional space {x, y, z} the phase space of the sixth dimension after the
formulas

x = X, y = Y, z = Z,
dx

dt
= u,

dy

dt
= v,

dz

dt
= w.

In the new coordinates the system (26) takes the form:

dx
dt

= u,
dy
dt

= v, dz
dt

= w,

du
dt

= ω2X + 2ωv − fm0X
r3 + ∂R

∂X
,

dv
dt

= ω2Y − 2ωu− fm0Y
r3 + ∂R

∂Y
,

dw
dt

= ∂R
∂Z

,

(32)

where 
R = f

6∑
j=1

mj

(
1

∆j
− XXj + Y Yj + ZZj

r3
j

)
,

∆2
j = (Xj −X)2 + (Yj − Y )2 + (Zj − Z)2 ,

r2
j = X2

j + Y 2
j + Z2

j , r
2 = X2 + Y 2 + Z2,

j = 1, 2, ..., 6,

(33)

(Xj , Yj , Zj = 0) and ω2 are those previously determined.
To study the stability of the equilibrium points of the system (32), it is

necessary to investigate the properties of the eigenvalues of matrix of the
linearized system in the neighborhood of each point Ni, Si. We will note, for
simplicity, the coordinates of any point Ni, Si through x∗i , y

∗
i , z
∗
i = 0 and by x

the vector (point)

x = (u− u∗, v − v∗, w − w∗, x− x∗, y − y∗, z − z∗) . (34)

In the notation (34), u∗ = v∗ = w∗ = 0.
The six-dimensional phase space is local, therefore each of the Ni and Si

equilibrium points (taken separately) represents the point x = 0 of this space.
Performing the linearization procedure of the right-hand sites of the system
(32) in the neighborhood of the phase point x = 0 , we obtain the following
system of linear differential equations:

dx

dt
= Ax, (35)
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where the matrix A of the size 6× 6 has the form:

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
a b 0 0 2ω 0
b c 0 −2ω 0 0
0 0 d 0 0 0

 . (36)

Elements a, b, c, d of matrix A, calculated using Mathematica are expressed by
the relationships

a = ω2 +
2 (x∗)2 − (y∗)2(
(x∗)2+(y∗)2

) 5
2

+

+m1

(
2(1− x∗)2 − (1− y∗)2(
(1−x∗)2+(1−y∗)2

)5/2
)

+m1

(
3(1 + x∗)2 − 1(

(1+x∗)2+(1+y∗)2
)5/2

)
+

+m4

(
2(1− y∗)2 − (1 + x∗)2(
(1−x∗)2+(1+y∗)2

)5/2
)

+m4

(
2(1 + y∗)2 − (1− x∗)2(
(1+x∗)2+(1−y∗)2

)5/2
)

+

+m6

(
2(α− x∗)2 − (α−y∗)2(
(α−x∗)2+(α−y∗)2

)5/2
)

+m6

(
2(α+ x∗)2 − (α+y∗)2(
(α+x∗)2+(α+y∗)2

)5/2
)

+ (37)

b =
3x∗y∗(

(x∗)2 + (y∗)2
) 5

2

+

+m1
3(1− x∗)(1− y∗)(

(1−x∗)2+(1−y∗)2
)5/2 +m1

3(1 + x∗)(1 + y∗)(
(1+x∗)2+(1+y∗)2

)5/2 +

−m4
3(1 + x∗)(1− y∗)(

(1+x∗)2+(1−y∗)2
)5/2−m4

3(1− x∗)(1 + y∗)(
(1−x∗)2+(1+y∗)2

)5/2 +

+m6
3(α− x∗)(α− y∗)(

(α−x∗)2+(α−y∗)2
)5/2 +m6

3(α+ x∗)(α+ y∗)(
(α+x∗)2+(α+y∗)2

)5/2 ; (38)

c = ω2 +
2 (y∗)2 − (x∗)2(
(x∗)2+(y∗)2

) 5
2

+

+m1

(
2(1− y∗)2 − (1− x∗)2(
(1−x∗)2+(1−y∗)2

)5/2
)

+m1

(
3(1 + y∗)2 − 1(

(1+x∗)2+(1+y∗)2
)5/2

)
+
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+m4

(
3(1− y∗)2 − (1 + y∗)2 − (1− x∗)2(

(1−x∗)2+(1+y∗)2
)5/2

)
+

+m4

(
3(1 + y∗)2 − (1− y∗)2 − (1 + x∗)2(

(1+x∗)2+(1−y∗)2
)5/2

)
+

+m6

(
2(α− y∗)2 − (α−x∗)2(
(α−x∗)2+(α−y∗)2

)5/2
)

+m6

(
2(α+ y∗)2 − (α+x∗)2(
(α+x∗)2+(α+y∗)2

)5/2
)

; (39)

d = − 1(
(x∗)2 + (y∗)2

)3/2−
−m1

(
1(

(1 + x∗)2+(1 + y∗)2
)3/2 +

1(
(1− x∗)2+(1− y∗)2

)3/2
)
−

−m4

(
1(

(1 + x∗)2+(1− y∗)2
)3/2 +

1(
(1− x∗)2+(1 + y∗)2

)3/2
)

+

−m6

(
1(

(α− x∗)2+(α− y∗)2
)3/2 +

1(
(α+ x∗)2+(α+ y∗)2

)3/2
)
. (40)

Expressions (37)-(40) depend on the values x∗i , y
∗
i , therefore for each equi-

librium position the values of the elements a, b, c, d of the matrix A will be
different.

The characteristic equation from which the eigenvalues of the matrix A are
determined has the form:

det (A− λE) =
(
λ2 − d

) (
λ4 +

(
4ω2 − a− c

)
λ2 + ac− b2

)
= 0. (41)

Let’s examine the roots of the equation in more details (41). From the
relation (40) we can see that always d < 0. From the equation

λ2 − d = 0 (42)

we obtain that as two eigenvalues of the matrix A will always be imaginary.
We will note them by λ5, λ6. Let’s search the equation now

λ4 +
(
4ω2 − a− c

)
λ2 + ac− b2 = 0. (43)

Each equilibrium position is stable if all four solutions of equation (43) are
imaginary. The problem at hand is then reduced to the determination of
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those values of the parameters m1 and α for which the elements a, b, c, d of
the matrix A receive such values that the roots of the bipatratic equation (43)
are purely imaginary (in the future we will note these roots by λ1, λ2, λ3, λ4

). The structure of the relationships (37) - (40) is rather complicated. The
determination of an analytical expression that would express the dependence
between of the eigenvalues of the matrix A and the parameters m1 and α is
virtually impossible.

Table 3 below contains the values λ1, λ2, λ3, λ4 for stationary points N1 and
S1. Analyzing the Table 3 we notice that for the stationary point N1, varying

Table 3 The eigenvalues of the matrix A

m1 α
N1 S1

—- λ1, λ2 λ3, λ4 λ1, λ2 λ3, λ4

0.01 0.858 ± 1.309 ± 1.123 i ± 0.284 i ± 0.518 i

0.01 0.858 ± 1.307 ± 1.122 i ± 0.494 i ± 0.322 i

0.01 0.858 ± 1.306 ± 1.122 i ± 0.459 i ± 0.369 i

0.01 0.858 ± 1.306 ± 1.121 i ± 0.004 + 0.36 i ± 0.004− 0.36 i

0.1 0.715 ± 1.191 ± 1.067 i ± 0.34 + 0.53 i ± 0.34− 0.53 i

0.1 0.717 ± 1.178 ± 1.060 i ± 0.407 + 0.56 i ± 0.407− 0.56 i

1 0.489 ± 1.367 ± 1.306 i ± 0.74 + 0.82 i ± 0.74− 0.82 i

1 0.505 ± 1.233 ± 1.128 i ± 0.75 + 0.83 i ± 0.75− 0.83 i

10 0.291 ± 2.503 ± 2.630 i ± 1.66 + 1.88 i ± 1.66− 1.88 i

100 0.2 ± 8.226 ± 8.568 i ± 15.312 ± 8.390 i

1000 0.2 ± 27.15 ± 28.07 i ± 17.76 + 19.89 i ± 17.76− 19.89 i

the values of the parameters m1 and α the eigenvalues of the matrix A are
not purely imaginary. The same result is obtained for the other Ni points. It
follows that stationary Ni points are unstable in the first approximation. We
will formulate this result by the theorem:

Theorem 3.1. The radial equilibrium points Ni of the differential equations
describing the restricted eight body problem are unstable in the first approxi-
mation for any values of the parameters m1 and α.
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From Table 3 we can see that in the equilibrium point S1 for certain values of
the parameters m1 and α the eigenvalues of the matrix A are purely imaginary.
Hence this stationary point S1 is stable in the first approximation. Similarly,
similar results are obtained for other points of type Si.

Theorem 3.2. There are values of the parameters m1 and α for which the
bisectorial stationary points Si in the restricted eight body problem are stable
in the first approximation.

Concluding remarks

We have determined sufficient conditions for the existence of the linear sta-
ble configurations describing the restricted Newtonian eight body problem.
We have used some built in functions of the Mathematica programming en-
vironment in order to determine the stationary points. Their linear stability
has been studied. It has been demonstrated that there are values of the pa-
rameters α and m1 for which the bisectorial stationary points are stable in the
first approximation.
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1. INTRODUCTION

In this paper are presented algorithms for implementation of spline functions
and will be graphically illustrated by a program implemented for Hermite
type cubic spline with minimal quadratic oscillation and Akima interpolation
method. This numerical method is implemented here to obtain a proper soft
which is tested and used on diabetology measurements.

In Section 2 we optimize Hermite type cubic spline and Akima interpolation
method. The Hermite interpolation consists in determining a polynomial (as
small as possible) passing through the points (xi, f(xi)) with derivatives of
a given order (evaluated in nodes) one with the values of the derivatives of
the same order of function f(x) in these points ([2],[6]). A method of Hermite
interpolation was presented in [3] by minimization of the quadratic oscillation
in average. In the method, we do not need to choose parameters ([1]), but
the obtained cubic interpolation curves may change from one side of the linear
interpolation curve to the other side([7],[8]). Minimization of the quadratic
oscillation in average [3] is considered a measure of the deviation of an interpo-
lation function of points (xi, yi),∀i = 0, n by the polygonal line joining these
points, and these deviations are called oscillations. These deviations can be
applied to any type of spline function.

The Akima method is based on piecewise polynomials with conditions im-
posed at the data points([5]). The function passes through the points with
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specified slopes. These slopes are determined by a local procedure, at a given
datum point. A method was presented in [4].

The computing method is given in Section 3. The last section contains some
numerical examples which illustrate the obtained theoretical results.

2. OPTIMIZATION PROCESSES

2.1. OPTIMIZING HERMITE TYPE CUBIC
SPLINE WITH MINIMAL OSCILLATION

For a partition ∆ of an interval [a, b],

∆ : a = x0 < x1 < · · · < xn = b,

on which we will build a Hermite interpolation procedure based on expres-
sion

S(x) = (1− s)3yi + 3(1− s)2s(yi +
hi
3
mi) + 3(1− s)s2(yi+1 −

hi
3
mi+1) + s3yi+1,

(1)

∀i = 1, n− 1 where hi = xi − xi−1, s = x−xi
hi

, ∀i = 1, n and y0, y1, ..., yn ∈ R
are given values and the derivatives mi remain to be determined. It is known
that S(xi) = yi, S‘(xi) = mi, ∀i = 1, n Let us consider the functionals

Sk =

b∫
a

[
S(k)(x)−H(k)(x)

]2
dx =

n−1∑
i=1

xi+1∫
xi

[
S(k)(x)−H(k)

i (x)
]2
dx,∀k = 0, 2

(2)

where H(x) = Hi(x) for x ∈ [xi, xi+1] and Hi = (1− s)yi + syi+1,s = x−xi
hi

.

Different to (1), in [9], the methods of determining the derivatives mi were
presented by minimizing

Hk =

b∫
a

[
S(k)(x)

]2
dx (3)

The motive of this paper is to present a method by minimizing Sk, for k = 1
which is the simplest shape-preserving interpolant. The method for obtaining
the values derivatives can be viewed as an optimal alternative to the natural
cubic spline method and the method in [3].
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As submited in [3], the method by minimizing S0 presents the cubic interpo-
lating spline with minimal quadratic oscillation in average. We can discuss the
method of minimizing S1. The method by minimizing S1 presents the cubic
spline interpolant so that S‘(x) is the optimal approximation of H‘(x). S‘(x)
represents the monotonicity of the interpolant, Si‘(x) represents the mono-
tonicity of the given data for x ∈ [xi, xi+1]. We deduce that S(x) has minimal
derivative oscillation to H‘(x) by choosing all mi, so we choose all mi in (1)
so that S‘(x) optimally approximates H‘(x).

For x ∈ [xi, xi+1], ∀i = 1, n− 1, hi = xi − xi−1, s = x−xi
hi
∈ [0, 1], ∀i = 1, n

S‘(x)− y − yi
hi

= (1− s)2(mi −
y − yi
hi

) + 2(1− s)s(2(y − yi)
hi

−mi −mi+1)+

+s2(mi+1 −
y − yi
hi

),

We denote

a = mi −
y − yi
hi

,

b =
2(y − yi)

hi
−mi −mi+1,

c = mi+1 −
y − yi
hi

From

1∫
0

(
k
i

)
(1− s)k−isids =

1

k + 1
,∀i = 0, k (4)

we obtain

S1 =
1

5

n−1∑
i=1

hi[a
2 + ab+

2b2 + ac

3
+ c2] (5)

Hence
∂S1
∂m1

= h1
15 (4m1 −m2 − 3y2−y1

h1
),

∂S1
∂mi

= hi−1

15 (4mi −mi−1 − 3yi−yi−1

hi−1
) + hi

15(4mi −mi+1 − 3yi+1−yi
hi

),
∂S1
∂mn

= hn−1

15 (4mn −mn−1 − 3yn−yn−1

hn−1
)∀i = 2, n− 1
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But for minimizing we have 
∂S1
∂m1

= 0,
∂S1
∂mi

= 0,
∂S1
∂mn

= 0.

Thus we obtain the system of normal equations:
4m1 −m2 = 3y2−y1

h1
,

mi−1 + himi−1

4mi+hi−1+hi
− himi+1

hi−1
= 3yi+1−yi−1

hi−1+hi

4mn −mn−1 = 3yn−yn−1

hn−1
∀i = 2, n− 1

This system is strictly diagonally dominant and therefore has unique solu-
tion. By minimizing S2 we obtain the system of normal equations


2m1 +m2 = 3y2−y1

h1
,

2mi + himi−1

4mi+hi−1+hi
+mi+1 − himi+1

hi−1+hi
= yi+1 − yi + hi(4yi−3yi−1−yi+1)

hi−1+hi
,

2mn +mn−1 = 3yn−yn−1

hn−1
,∀i = 2, n− 1

On the case of parametric curves we take xi as parametric knots and yi ∈
R2,. We need to consider the functionals

Sk =

b∫
a

‖S(k)(x)−H(k)
i (x)‖2dx,∀k = 0, 2 (6)

where the norm means the Euclidean norm. Let ∂S1
∂mi

be the gradient of S1 on
mi. For constructing a closed curve we consider yn−y1 = 0 and mn−m1 = 0,
then by (7) we have

∂S1

∂m1
+
∂S1

∂mn
= 0

h1

15
(4m1 −m2 − 3

y2 − y1

h1
) +

hn−1

15
(4mn −mn−1 − 3

yn − yn−1

hn−1
) = 0

4m1 −mn−1 −
h1(m2 +mn1)

h1 + hn−1
= 3

y2 − yn−1

h1 + hn−1

Thus we obtain the we obtain the vector system of normal equations:



A Comparison between Akima and Hermite Type Cubic Spline... 67


4m1 −mn−1 − h1(m2+mn−1)

h1+hn−1
= 3 y2−yn−1

h1+hn−1
,

4mi −mi−1 + himi−1

hi−1+hi
− himi+1

hi−1+hi
= 3yi+1−yi−1

hi−1+hi

4mn−1 −mn−2 − hn−1m1

hn−2+hn−1
+ hn−1mn−2

hn−2+hn−1
= 3 yn−yn−2

hn−2+hn−1
∀i = 2, n− 1

Theorem 2.1. (See [3]) For given points (xi, yi), i = 0, n , there exists a
unique cubic spline of the Hermite type having minimal quadratic oscillation
in average. This cubic spline s ∈ C1[a, b] ] can be determined by using an
iterative algorithm. If s interpolates a function f ∈ C[a, b], f(xi) = yi, i = 0, n,
then its error estimation is

|f(x)− s(x)| ≤
(

1 +
h3

4h
3

)
ω(f, g), ∀x ∈ [a, b] (7)

where h = max
{
hi : i = 1, n

}
, h = min

{
hi : 1, n

}
where we denote

ω(f, h) = max
{
ω(f, hi) : i = 1, n

}
and

ω(f, δ) = sup {|f(t)− f(s)| : t, s ∈ [a, b], |t− s| ≤ δ}

is the uniform modulus of continuity. If f ∈ C1[a, b] then |f(x)− s(x)| ≤(
1 + h3

4h
3

)
· ‖f ′‖∞h, where x ∈ [a, b].

For equidistant grids [4], the estimate (12) becomes

|f(x)− s(x)| ≤ 5

4
ω(f, h), ∀x ∈ [x0, xn]. (8)

Optimizing at the end-points the Akima interpolation
method

For a partition ∆ of an interval [a, b],

∆ : a = x0 < x1 < · · · < xn = b,

Sk =

n−1∑
i=1

xi∫
xi−1

[
S(k)(x)−H(k)

i (x)
]2
dx (9)
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We minimize the partial quadratic oscillation in average on the end inter-
vals [x0, x2] and [xn−2, xn] . Since the unknown derivatives m0,m1,mn−1,mn

appear only in the intervals [x0, x2] and [xn−2, xn] , respectively, we define the
residual [4]

Sk =
∑
i∈K

xi∫
xi−1

[
S(x)− xi − x

hi
· yi−1 −

x− xi−1

hi
· yi
]2

dx

for K = {1, 2, n− 1, n}.

Theorem 2.2. (See [4]) For given data (xi, yi), i = 0, n , and with the values
mi, i = 2, n− 2 there are uniquely determined the values m0,m1,mn−1,mn.

|s(x)− f(x)| ≤
(

1 +
h4

4h4

)
· ω(f, h), ∀x ∈ [x0, x2] ∪ [xn−2, xn] (10)

where h = max
{
hi : i = 1, n

}
, h = min

{
hi : 1, n

}
where we denote

ω(f, δ) = max {|f(u)− f(v)| : u, v ∈ [a, b], |u− v| ≤ h}

is the uniform modulus of continuity. For equidistant grids the error estimate
becomes

|s(x)− f(x)| ≤ 5

4
ω(f, h), ∀x ∈ [x0, xn]. (11)

Since the parameters m0,m1,mn−1,mn appear separated in the intervals
[x0, x2] and [xn−2, xn], respectively, the normal equations ∂S

∂m0
= 0, ∂S

∂m1
= 0,

∂S
∂mn−1

= 0, ∂S
∂mn

= 0 form two separated systems:{
∂S
∂m0

= 0
∂S
∂m1

= 0

and {
∂S

∂mn−1
= 0

∂S
∂mn

= 0.

After elementary calculus, these systems become:{
m0 − 3

4m1 = 1
4h1

(y1 − y0)

− 3h3
i

4(h3
1+h3

2)
m0 +m1 =

3h3
2

4(h3
1+h3

2)
m2 +

h2
1(y1−y0)

4(h3
1+h3

2)
+

h2
2(y2−y1)

4(h3
1+h3

2)
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and 
mn−1 − 3h3

n

4(h3
n−1+h3

n)
mn =

3h3
n−1

4(h3
n−1+h3

n)
mn−2+

+
h2
n−1

4(h3
n−1+h3

n)
(yn−1 − yn−2) + h2

n

4(h3
n−1+h3

n)
(yn − yn−1)

−3
4mn−1 +mn = 1

4hn
(yn − yn−1)

respectively. The systems (19) and (20) have unique solution, and therefore
the values m0,m1,mn−1,mn are uniquely obtained. The Hesse matrix ([4]) of

Sk is H =
(
∂2Sk
∂m2

i

)
, ∀i = 0, n having the form:

H = 2 ·


h3

1
105

h3
1

140 0 03
4

h3
1

105
h3

1
105 +

h3
2

105 0 0

0 0
h3
n−1

105 + h3
n

105 − h3
n

140

0 0 − h3
n

140 − h3
n

105

 (12)

Since all the diagonal minors of H are strictly positive, we infer that the
joined solution (m0,m1,mn−1,mn) of the systems (19) and (20) is the unique
critical point of the residual Sk and minimize it. So, (m0,m1,mn−1,mn) is
the unique minimal point of Sk .

3. ILLUSTRATION OF INTERPOLATION
METHODS

We first present the performance of the proposed methods by using the
experimental data in [3] and then a design construct of aerodynamic profiles
to determine which function is the most efficient for increasing speed.

This numerical method is used to obtain a soft applicable in diabetology
at the fitting of glycemic profile experimental data. The soft was created in
Visual C#.

The usual measurements of blood-glucose levels (represented in mg/dl) were
realized at seven moments: at 07:00 AM, 9:00 AM, 11:30 AM, 13:30 PM, 17:45
PM, 20:30 PM, and 23:00 PM on the first day. On the time scale, half an hour
was rendered as 0.5. A translation was realized with start step at 7:00 AM,
therefore the moments of measurement were translated to 0, 2, 4.5, 6.5, 10.75,
13.5 and 16. The blood-glucose levels of the subject were 93, 98, 107, 98, 97,
85, 92.

For this patient, interpolations of the quadratic spline type, cubic spline,
Akima and minimal quadratic oscillation of Hermite type were made on the
recorded data. In the illustration, the blue color represents the minimal square
oscillation of the Hermite type, the cubic spline is represented by the red color,
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Akima with green, and the gray colored quadratic spline. The polygon line is
black.

Fig. 1. Hermite (CS), Hermite (OM), Akima, Quadratic spline

Therefore, we can see that the minimal quadratic oscillation of Hermite
type shows the best approximation.

INDUSTRIAL APPLICATIONS OF SPLINE INTER-
FACE

We have set millimeter points to get the longitudinal section of a boat. The
points are:
x→ 0; 0.6; 1.2; 2; 2.8; 3.4; 3.8; 4,
ysuperior → 0.6; 0.9; 1; 1.1; 1; 0.9; 0.8; 0.6,
yinferior → 0.6; 0.3; 0.2; 0.1; 0.2; 0.3; 0.4; 0.6.

Fig. 2. Legend - Akima‘s not optimized method and Akima’s optimized method

We can see that the optimized end-points method of Akima shows the best
aerodynamic properties of the profiles due to attack angle formed by the tan-
gents at this peak. This is possible due to infiltration point in the last subin-
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Fig. 3. Akima‘s not optimized method (green) , Akima’s optimized method (red)

terval of the optimized method of Akima. As the forward speed is routed along
the longitudinal axis of the boat, this speed becomes higher at a lower angle.
Therefore the aerodynamic properties of this profile are improved at the same
engine speed resulting in a higher displacement speed for the optimized Akima
method at the extremities.



72 Larisa Cheregi

References

[1] H. Akima, A NEW METHOD FOR INTERPOLATION AND SMOOTH CURVE FIT-
TING BASED ON LOCAL PROCEDURES, J. Asocc. Comp. Machinery, 4(1970),
589–602.

[2] J. H. Ahlberg, E. N. Nilson, J. L. Walsh, The Theory of Splines and Their Applications,
Academic Press, New York, London, 1967.

[3] A. M. Bica, FITTING DATA USING OPTIMAL HERMITE TYPE CUBIC IN-
TERPOLATING SPLINES, Applied Mathematics Letters, Elsevier, Volume 25(2012),
2047–2051.

[4] A. M. Bica, OPTIMIZING AT THE END-POINTS THE AKIMAS INTERPOLA-
TION METHOD OF SMOOTH CURVE FITTING, Computer Aided Geometric De-
sign, Elsevier, Volume 31, 2014, 245–257.

[5] C. Iacob, D. Homentcovschi, N. Marcov, A. Nicolau, MATEMATICI CLASICE SI
MODERNE, vol.IV, Ed. Tehnica, Bucuresti, 1983.

[6] D. Kincaid, W. Cheney: NUMERICAL ANALYSIS MATHEMATICS OF SCIEN-
TIFIC COMPUTING, Third Edition, American Mathematical Society, Providence,
Rhode Island, 2002 .

[7] D. Kincaid, W. Cheney, NUMERICAL ANALYSIS MATHEMATICS OF SCIEN-
TIFIC COMPUTING, Sixth Edition, American Mathematical Society, Providence,
Rhode Island, 2008.

[8] D. D. Stancu, Gh. Coman, O. Agratini, R. Trâmiţaş, ANALIZĂ NUMERICĂ ŞI TEO-
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Abstract In information theory, linguistics and computer science are important dis-
tinct string metrics for measuring the difference between two given strings
(sequences). In distinct domains of research are well known the distances of
Hamming and Graev-Levenshtein between two strings. For any string distance
there are distinct geometrical compute problems. Some of them are as follows:

- the calculation of the median of two strings;
- the calculation of the weighted means of two strings;
- the problem of the convexity of the weighted mean set.
In the present article the above geometrical problems are examined for the

Hamming and Graev-Levenshtein string distances.
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1. INTRODUCTION

Let X be a non-empty set and d : X ×X → R be a mapping such that for
all x, y ∈ X we have:

(im) d(x, y) ≥ 0;
(iim) d(x, y) + d(y, x) = 0 if and only if x = y,
(iiim) d(x, z) ≤ d(x, y) + d(y, z).

Then (X, d) is called a quasimetric space and d is called a quasimetric on X.
A function d with properties (im) and (iim) is called a distance on X.

If d is a quasimetric on X with property
(ivm) d(x, y) = d(y, x),

then (X, d) is called a metric space and d is called a metric.
If
(vm) d(x, y) = 0 if and only if x = y,

then (X, d) is called a strong quasimetric space and d is called a strong quasi-
metric on X.

73
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General problems in distance spaces were studied by distinct authors (see
[1, 2, 5, 6, 17, 18, 10, 11, 14]).

Let d be a quasimetric on the non-empty set X. Fix an oriented pair
a, b ∈ X. We put:

- αd(a; a, b) = {x ∈ X : d(a, x) = 0, d(x, b) = d(a, b)} is the left annihilator
of the oriented pair of points a, b;

- αd(b; a, b) = {x ∈ X : d(a, x) = d(a, b), d(x, b) = 0} is the right annihilator
of the oriented pair of points a, b;

- Md(a, b) = {x ∈ X : d(a, x) + d(x, b) = d(a, b)} is the weighted mean of
the oriented pair of points a, b;

By definition, {a, b} ⊂ αd(a; a, b) ∪ αd(b; a, b) ⊂Md(a, b).
We assume that for a given finite space X with a given quasimetric d there

exist ”effective algorithms” of the calculation of the weighted mean Md(a, b)
for any given oriented pair of points a, b ∈ X [3, 4].

LetG be a semigroup and d be a pseudo-distance onG. The pseudo-distance
d is called:

Left (respectively, right) invariant if d(xa, xb) ≤ d(a, b) (respectively,
d(ax, bx) ≤ d(a, b)) for all x, a, b ∈ G;

Invariant if it is both left and right invariant.

A distance d on a semigroup G is called stable if d(xy, uv) ≤ d(x, u)+d(y, v)
for all x, y, u, v ∈ G.

Proposition 1.1. Let d be a quasimetric on a semigroup G. The next asser-
tions are equivalent:

1 d is invariant.

2 d is stable.

A monoid is a semigroup with an identity element.
Fix a non-empty set A. The set A is called an alphabet. Let L(A) be the set

of all finite strings a1a2 . . . an with a1, a2, . . . , an ∈ A and n ∈ N = {0, 1, 2, ...}.
Let ε be the empty string. If a = a1a2...an and n = 0, then a = ε. Consider
the strings a1a2 . . . an for which ai = ε for some i ≤ n. If ai 6= ε, for any i ≤ n,
or n = 1 and a1 = ε, the string a1a2 . . . an is called a canonical string or an
irreducible string. The following set:

Sup(a1a2 . . . an) = {a1, a2, . . . , an} ∩A

is called the support of the string a1a2 . . . an and the function:

l(a1a2 . . . an) = |{i ≤ n : ai 6= ε}|
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represents the length of the string a1a2 . . . an.
The number of elements l∗(a1a2...an) = n of the string a1a2...an is called the

general length of the string a1a2...an. For two strings a1 . . . an and b1 . . . bm,
their product (concatenation) is a1 . . . anb1 . . . bm. If n ≥ 2, i < n and ai = ε,
then the strings a1 . . . an and a1 . . . ai−1ai+1 . . . an are considered equivalent.
In this case any string is equivalent to one unique canonical string.

Denote by L∗(A) the family of all strings and by L(A) the family of all
canonical strings. In this case L∗(A) became a semigroup and L(A) becomes
a monoid with identity ε. The monoid L(A) is not a subsemigroup of the
semigroup L∗(A), but L(A) \ {ε} is a subsemigroup of the semigroups L∗(A)
and L(A)! We identify the equivalent strings and κ : L∗(A) −→ L(A) is the
operation of the identification. By construction, L(A) ⊂ L∗(A) and κ(a) = a
for any a ∈ L(A). Hence, the mapping κ is a homomorphism and a retract.

If the strings a and b are equivalent, then we denote a ∼ b and say that the
string b is a representation of the string a.

Let a, b ∈ L(A). We consider the oriented pairs of strings. If a and b is a
given pair of strings, then a is considered the first element of the pair a and
b. The representations a′ = a1a2...an and b′ = b1b2...bm of the strings a and
b are called parallel decompositions if n = m. The parallel representations
a′ = a1a2...an and b′ = b1b2...bn of the strings a and b are irreducible if A ∩
{ai, bi} 6= ∅ for each i ≤ n, or n = 1 and a1 = b1 = ε. The family of all
parallel decompositions is infinite and the family of all irreducible parallel
decompositions is finite. Moreover, n ≤ l(a) + l(b) for any irreducible parallel
representations a′ = a1a2...an and b′ = b1b2...bn of the strings a and b.

Let d be a quasimetric on Ā = A ∪ {ε}.
For any two strings a = a1a2...an and b = b1b2...bm from L∗(A) we put:

dH(a, b) = Σ{d(ai, bi) : i ≤ min{n,m}}
+ Σ{d(ε, bj) : n+ 1 ≤ j ≤ m}
+ Σ{d(aj , ε) : m+ 1 ≤ j ≤ n}.

The function dH is a quasimetric on L∗(A) and is called the Hamming
extension of the distance d on L∗(A). If d is a metric, then dH is a metric as
well [13, 7].

For any two strings a, b ∈ L(A) we define:

dG(a, b) = min{dH(a′, b′) : a′, b′ ∈ L∗(A), a = κ(a′), b = κ(b′)}.
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The distance dG is called the Graev extension or the Graev-Markov-Livenstein
extension of the distance d [12, 7, 8, 16]. Obviously, we have that dG(a, b) ≤
dH(a, b) for all a, b ∈ L(A).

The representations a′ = a1a2...an and b′ = b1b2...bm of the a, b ∈ L(A) are
called parallel d-optimal decompositions of the pair of strings a, b if n = m and
dG(a, b) = Σ{d(ai, bi) : i ≤ n}.

The following assertions were proved in [7, 8].

Theorem 1.1. For any quasimetric d on the alphabet Ā there exists a unique
invariant quasimetric d∗ on the monoid L(A) with following properties:

1. d∗(x, y) = d(x, y) for any x, y ∈ Ā.
2. If ρ is an invariant quasimetric on L(A) and ρ(x, y) ≤ d(x, y) for all

x, y ∈ Ā, then ρ(x, y) ≤ d∗(x, y) for all x, y ∈ L(A).
3. If a′ = a1a2...an and b′ = b1b2...bn are parallel representations of the two

strings a, b ∈ L(A), then d∗(a, b) ≤ Σ{d(ai, bi) : i ≤ n}.
4. For any two strings a, b ∈ L(A) there exist n ≥ 1 and the paral-

lel representations a′ = a1a2...an and b′ = b1b2...bn, such that d∗(a, b) =
Σ{d(ai, bi) : i ≤ n}. Therefore, for any oriented pair of strings a, b ∈ L(A)
there exist parallel d-optimal decompositions.

5. d∗ = dG.
6. If d is a metric, then d∗ is a metric as well.

There exist algorithms of construction of parallel d-optimal decompositions
of the given pair of strings a, b ∈ L(A) [7, 8]. Our aim is to propose some
algorithms of the calculation of the weighted means MdG(a, b) for any given
oriented pair of strings a, b ∈ L(A). Some cases were presented in [3, 4].

We mention that the Graev extension dG [12, 19, 9, 7, 8] coincides with
the Levenshtein [15] extension dL of the quasimetric d on Ā. Levenshtein
distance between two strings a = a1a2 · · · an and b = b1b2 · · · bm is defined as
the minimum number of insertions, deletions, and substitutions required to
transform one string to the other.

We state the following problems and present algorithms to solve them for
discrete distances.

Problem 1.1 Find the methods (algorithms) for calculation of the distances
dG(x, y) for the given x, y ∈ L(A).

Problem 1.2 Find the applications of the quasi-metrics dH and dG in the
fields of the information theory.

For the case of discrete distance d, i.e. d(x, x) = 0 and d(x, y) = 1 for any
distinct x, y ∈ Ā, is well known the following algorithm for computing the
distance d∗ = dG = dL:



About the Construction of the Weighted Means of a Pair of Strings 77

Algorithm 1 Graev-Markov-Levenshtein Distance:

Given x, y ∈ L(Ā) compute dL(x, y), for the case of a discrete metric.

1: procedure compute d(x, y) . The dL of x and y

2: for i← 1,m & j ← 1, n do

3: d[i, 0]← i, d[0, j]← j . initializing the memorization matrix

4: end for

5: i← 1, j ← 1 . initializing loop variables

6: for j ← 1, n do

7: for i← 1,m do

8: if xi = yj then

9: d[i, j]← d[i− 1, j − 1]

10: else

11: d[i, j] := min(d[i− 1, j] + 1,min(d[i, j − 1] + 1, d[i− 1, j − 1] + 1))

12: end if

13: end for

14: end for

15: return d[m,n], d . value of dL and matrix d

16: end procedure

For computation of the distance d∗ = dG = dL for any quasimetric d we
propose the following algorithm:

Algorithm 2 QuasiMetric:

Given x, y ∈ L(Ā) compute d∗(x, y), for the case of quasimetric.

procedure compute quasi d(x, y, dist) . The dL of x and y

2: for i← 1,m & j ← 1, n do

d[i, 0]← i, d[0, j]← j . initializing the memorization matrix

4: end for

i← 1, j ← 1 . initializing loop variables

6: for j ← 1, n do

for i← 1,m do

8: if dist(xi, yj) = 0 then

d[i, j]← d[i− 1, j − 1]

10: else

d[i, j] := min(d[i− 1, j] + costremove,

min(d[i, j − 1] + costinsert, d[i− 1, j − 1] + dist(xi, yi)))

12: end if

end for

14: end for

return d[m,n], d . value of dL and matrix d

16: end procedure
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2. WEIGHTED MEANS OF THE PAIR OF
STRINGS

On the given alphabet Ā = A ∪ {ε} fix a quasimetric d with the Graev
extension dG.

Lemma 2.1. Let a, b, c ∈ L(A), n ≥ 1 and a′ = a1a2...an, b′ = b1b2...bn,
c′ = c1c2...cn be representations of the strings a, b, c respectively. If

dG(a, b) = Σ{d(ai, bi) : i ≤ n} = Σ{d(ai, ci) + d(ci, bi) : i ≤ n},

then the following assertions hold:
1. The strings a′ = a1a2...an and b′ = b1b2...bn form the parallel d-optimal

representations of the pair of strings a and b.
2. The strings a′ = a1a2...an and c′ = c1c2...cn form the parallel d-optimal

representations of the pair of strings a and c.
3. The strings c′ = c1c2...cn and b′ = b1b2...bn form the parallel d-optimal

representations of the pair of strings c and b.

Proof. Follows from the inequality dG(x, y) ≤ dG(x, z) + dG(z, y), for any
strings x, y, z ∈ L(A).

We define the following sets:

MdG(a, b) = {x ∈ L(A) : dG(a, b) = dG(a, x) + dG(x, b)}

and

M∗dG(a, b) = {x ∈ L∗(A) : dG(a, b) = dG(a, κ(x)) + dG(κ(x), b)}

as the sets of weighted d-means of the oriented pair of strings a, b ∈ L(A).
Assume that

MdH (a, b) = {x ∈ L∗(A) : dH(a, b) = dH(a, x) + dH(x, b)}

is the set of H-weighted d-means of the oriented pair of strings a, b ∈ L∗(A).

First, we construct equivalent representations of strings from MdG(a, b) with
respect to given parallel d-optimal decompositions of a and b.

Theorem 2.1. Any fixed parallel d-optimal decompositions of a pair given
strings a, b ∈ L(A) generate weighted means, simultaneously with their equiv-
alent representations, which form parallel d-optimal decompositions with the
fixed representations of the given strings.

Proof. We present the proof by construction. Let a′ = a1a2...an and
b′ = b1b2...bn be the fixed parallel d-optimal decompositions of the strings
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a and b. Denote M̄∗dG(a′, b′) = {c = c1c2...cn ∈ L∗(A) : dH(a′, c) + dH(c, b′) =

dG(a, b)} and M̄dG(a′, b′) = {κ(c) : c ∈ M̄∗dG(a′, b′)}.
We aim to construct strings of form c′ = c1c2...cn such that for c = κ(c′)

we have dG(a, b) = dG(a, c) + dG(c, b) = Σ{d(ai, ci) + d(ci, bi) : i ≤ n}.
For each i ≤ n we fix ci ∈Md(ai, bi) = {x ∈ Ā : d(ai, x)+d(x, bi) = d(ai, bi)}

and put c′ = c1c2...cn. Let c = κ(c′). From Lemma 2.1 it follows:

the strings a′ = a1a2...an and c′ = c1c2...cn form the parallel d-optimal
representations of the pair of strings a and c;

the strings c′ = c1c2...cn and b′ = b1b2...bn form the parallel d-optimal
representations of the pair of strings c and b;

dG(a, b) = dG(a, c) + dG(c, b);

c ∈MdG(a, b).

The numbers n(a′, b′) = |M̄dG(a′, b′)| and n∗(a′, b′) = |M̄∗dG(a′, b′)| are esti-
mated by the following relations:

n(a′, b′) ≤ n∗(a′, b′) = Π{|Md(ai, bi)|i ≤ n},
Π{|Md(ai, bi)|i ≤ n} ≥ 2|{i≤n:ai 6=bi}|.

This completes the proof of the theorem.

In the case of discrete metric when dG(a, b) is an even number, we have the
following algorithm for constructing the medians of a pair strings:

Algorithm 3 Medians of OPD of x and y:

Given x, y ∈ L(Ā) construct m ∈ L(Ā), s.t. d∗(x,m) = d∗(m, y).

1: procedure medians(x, y) . Generates medians of x and y
2: d∗ ← compute d(x,y) . calculates distance between x and y
3: if d∗ is odd then
4: return ”distance d∗(x, y) is odd, set M is an empty set.”
5: end if
6: OPD ← generate OPD(x,y) . generates optimal parallel decomp.
7: I = {i : 1 ≤ i ≤ l∗(x′)}
8: for all (x′, y′) in OPD do
9: I1 = {i : x′i = y′i}

10: I2 = I \ I1
11: for all (I3 = Choose (|I| − d)/2 elements from I2) do
12: m := m1m2 . . .m|I|, where mi = x′i if i ∈ I1 ∪ I3, else mi = y′i
13: M := M ∪ {m};
14: end for
15: end for
16: return M . Median set of x and y
17: end procedure
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Remark 2.1. One can notice that the median of a pair of strings is a special
case of the above theorem. In particular, if C ⊂ {1, 2, ..., n}, and

Σ{d(ai, bi) : i ∈ C} = Σ{d(ai, bi) : i 6∈ C},

putting ci = ai for i ∈ C and ci = bi for i 6∈ C, for c = κ(c1c2...cn) we get
dG(a, b) = 2dg(a, c) = 2dG(c, b) and c is an element of the median of a pair of
strings a, b.

Further we present an important result which will be used to prove the
converse of Theorem 2.1.

Lemma 2.2. Let a, b and c be three strings for which dG(a, b) = dG(a, c) +
dG(c, b). Then there exist n ≥ 1 and the strings a′ = a1a2...an, b′ = b1b2...bn
and c′ = c1c2...cn such that:

1. The strings a′ = a1a2...an and b′ = b1b2...bn form the parallel d-optimal
representations of the pair of strings a and b.

2. The strings a′ = a1a2...an and c′ = c1c2...cn form the parallel d-optimal
representations of the pair of strings a and c.

3. The strings c′ = c1c2...cn and b′ = b1b2...bn form the parallel d-optimal
representations of the pair of strings c and b.

4. The representation c′ = c1c2...cn of the string c ∈MdG(a, b) is generated
by the parallel d-optimal representations a′ = a1a2...an, b′ = b1b2...bn of the
pair of strings a and b.

Proof. First we examine the case when c ∼ e. We fix the parallel d-optimal
representations a′ = a1a2...an and b′ = b1b2...bn of the pair of strings a and
b. Then we put c′ = c1c2...cn, where ci = ε for each i ≤ n. In this case the
assertions of Lemma are proved.

Assume now that the κ(c) 6= ε. Then l(c) = k ≥ 1. In this case we use the
following algorithm:

1. Fix the parallel d-optimal representations a1 = u1u2...up and c1 =
v1v2...vp of the pair of strings a and c and the parallel d-optimal represen-
tations c2 = w1w2...wm and b2 = z1z2...zm of the pair of strings c and b.

2. We determine the sets {i ≤ p : vi 6= ε} = {ij : j ≤ k} and
{i ≤ m : si 6= ε} = {sj : j ≤ k}, where 1 ≤ i1 < i2 < ... < ik ≤ p and 1 ≤ s1 <
s2 < ... < sk ≤ m.

3. We calculate n1 = max{i1, s1}, n2 = max{i2 − i1, s2 − s1} + n1, ..., nk
= max{ik − ik−1, sk − sk−1} + nk−1, n = nk+1 = max{p− ik,m− sk} + nk.

4. Fix two monotone injection mappings f : {1, 2, ..., p} → {1, 2, ..., n} and
g : {1, 2, ...,m} → {1, 2, ..., n} such that f(i1) = g(s1) = n1 and f(ij) = g(sj)
= nj for each j ≤ k.
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5. We construct the string c′ = c1c2...cn, where cnj = vij = wsj for each
j ≤ k and ci= ε if i 6∈ {n1, n2, ..., nk}.

6. Fix the representation a′ = a1a2...an of the string a such that anj = uij
for each j ≤ k. We can assume that af(i) = ui for each i ≤ p and ai = ε for
i 6∈ f({1, 2, ..., p}).

7. Fix the representation b′ = b1b2...bn of the string a such that bnj = zsj
for each j ≤ k. We can assume that bg(i) = zi for each i ≤ m and bi = ε for
i 6∈ g({1, 2, ...,m}).

8. The representations a′ = a1a2...an, b′ = b1b2...bn and c′ = c1c2...cn are
constructed.

From the above, by construction, we obtain the following:

dH(a1a2...an, c1c2...cn) = dH(u1u2...up, v1v2...vp) = dG(a, c),

dH(c1c2...cn, b1b2...bn) = dH(w1w2...wm, z1z2...zm) = dG(c, b),

dG(a, b) ≤ dH(a1a2...an, b1b2...bn) ≤ Σ{d(ai, bi) : i ≤ n}.

Also, the following equalities hold:

Σ{d(ai, bi) : i ≤ n} = Σ{d(ai, ci) + d(ci, bi) : i ≤ n}
= dG(a, c) + dG(c, b) = dG(a, b).

Hence a′ = a1a2...an, b′ = b1b2...bn and c′ = c1c2...cn are the desired represen-
tations. The proof is complete.

We are now ready to state the converse of Theorem 2.1.

Corollary 2.1. Any weighted mean of a fixed pair of strings is generated by
some of their optimal parallel decompositions.

Remark 2.2. Let a, b ∈ L(A). Then from Lemma 2.2 it follows:
1. Any weighted mean of a fixed pair of strings is generated by some of their

optimal irreducible parallel decompositions.
2. If for any x, y ∈ Ā the set Md(x, y) of all weighted means is finite, then

of the oriented pair of points a, b ∈ L(A) the set Md(a, b) of all weighted means
is finite too.

In the case of the discrete metric there exist algorithms of construction of
all parallel d-optimal decompositions of the given pair of strings a, b ∈ L(A)
[7, 8]. The pseudo-code of such algorithm is presented below:
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Algorithm 4 Optimal Parallel Decompositions (OPD):

Generate all optimal parallel decompositions of given x, y ∈ L(Ā).

1: procedure generate OPD(x, y)

2: parameters costs of insertion and

3: removal operations - costinsert and costremove respectively.

4: d, D := compute D(x, y);

5: return build OPD(n,m,x,y,””,””,D) . n,m lengths of x and y

6: end procedure

7: Backtracking function to incrementally generate OPD

8: procedure build OPD(n,m,x,y,a,b,D)

9: if (n=0) and (m=0) then

10: return (reverse(a), reverse(b))

11: end if

12: if ((n > 0)and(m > 0)) and

13: ((D[n,m] = D[n− 1,m− 1] + dist(xn, ym)) or

14: ((D[n,m] = D[n− 1,m− 1]) and (dist(xn, ym) = 0))) then

15: Build OPD(n-1,m-1,a+xn,b+ym)

16: else if (n > 0) and (D[n,m] = D[n− 1,m] + costremove) then

17: Build OPD(n-1,m,a+xn,b+ε)

18: else if (m > 0) and (D[n,m] = D[n,m− 1] + costinsert) then

19: BuildOPD(n,m-1,a+ε,b+ym)

20: end if

21: end procedure

Lemma 2.2 is not true for arbitrary strings.

Example 2.1. Let {0, 1} ⊂ A, where 0 6= 1. Consider that d(x, x) = 0 for
any x ∈ Ā and d(x, y) = 1 for any distinct elements x, y ∈ Ā. We say that d
is the discrete metric on Ā. Then d, dH and dG are metrics.

Consider the canonical strings a = 01, b = 0 and c = 1. We have dG(a, b)
= dH(a, b) = dG(a, c) = dH(a, c) = dG(c, b) = dH(c, b) = 1.

Fix the representations a′ = a1a2...an, b′ = b1b2...bn and c′ = c1c2...cn of
the strings a, b and c respectively. Assume that:

- the strings a′ = a1a2...an and b′ = b1b2...bn form the parallel d-optimal
representations of the pair of strings a and b.

- the strings a′ = a1a2...an and c′ = c1c2...cn form the parallel d-optimal
representations of the pair of strings a and c.

There exist 1 ≤ i < j ≤ n such that ai = 0, aj = 1 and as = ε for
s 6∈ {i, j}. Since dG(a, b) = Σ{d(as, bs) : s ≤ n} = 1, we have bi = 0 and bs
= ε for s 6= i. Since dG(a, c) = Σ{d(as, cs) : s ≤ n} = 1, we have cj = 1 and
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and cs = ε for s 6= j. Thus dH(b1b2...bn, c1c2...cn) =2 > 1 =dG(b, c) and the
strings c′ = c1c2...cn and b′ = b1b2...bn does not form the parallel d-optimal
representations of the pair of strings c and b. Thus the requirement dG(a, b)
= dG(a, c) + dG(c, b) is essential in the conditions of Lemma 2.2.

Example 2.2. Let {0, 1} ⊂ A, where 0 6= 1. Consider that d(x, x) = 0 for
any x ∈ Ā and d(x, y) = 1 for any distinct elements x, y ∈ Ā. Then d, dH
and dG are metrics.

Let a′ = a1a2...an and b′ = b1b2w2 . . . bnun be the fixed parallel d-optimal
decompositions of the strings a and b. Let N = {i ≤ n : ai 6= bi}. For any
proper subset M of N we put cM = c1c2...cn, where ci = ai for i 6∈M and ci
= bi for i ∈M . For the improper subsets we have c∅ =a and cN = b. As was
proved in Theorem 2.1, c = κ(cM ) ∈ MdG(a, b). We observe that M̄∗dG(a′, b′)

is the set of all strings cM , M ⊂ N , and M̄dG(a′, b′) = κ(M̄∗dG(a′, b′)).

The number n∗(a′, b′) of such strings from the set M̄∗dG(a′, b′), generated by

the above method, is equal to 2|N |. We mention that the number n(a′, b′) of
the canonical strings M̄dG(a′, b′) may be < 2|N |.

Let a = 1 and b = 0000 be the canonical representation of the given strings.
We have dG(a, b) = dH(a, b) = 4. For a and b we have the following parallel
d-optimal decompositions a′ = 1εεε, b′ = 0000. These parallel decomposi-
tions generate the following eight canonical strings 1, 0, 00, 10, 000, 100,
0000, 1000. We have M̄dG(a′, b′) = {1, 0, 00, 10, 000, 100, 0000, 1000}, N =

{1, 2, 3, 4} and 8 = |CdG(a′, b′)| < 2|N | = 24 = 16. The other parallel d-
optimal decompositions a′′ = εεε1, b′′ = 0000 of a, b present the following set
of canonical strings M̄dG(a′′, b′′) = {1, 0, 00, 01, 000, 001, 0000, 0001} with N =
{1, 2, 3, 4}. We have that M̄dG(a′, b′) ∩ M̄dG(a′′, b′′) = {1, 0, 00, 000, 0000}.

Let a, b ∈ L∗(A). The following remarks shows that the construction of the
H-weighted d-means c ∈ MdH (a, b) is more simple than the construction of
the weighted d-means c ∈MdG(a, b).

Remark 2.3. Let a, b ∈ L(A). Then:
1. If x, y ∈ L∗(A), x ∼ y and x ∈M∗dG(a, b), then y ∈M∗dG(a, b).
2. If x ∈ L∗(A), x ∼ y, then x ∈M∗dG(a, b) if and only if κ(x) ∈MdG(a, b).

If a ∈ L∗(A), c = c1c2...cn, n ≥ 1 and ci = a for any i ≤ n, then we put
c = an.

Remark 2.4. Let a, b, c ∈ L∗(A) and n ≥ 1. Then c ∈ MdH (a, b) if and only
if c · εn ∈ MdH (a, b). The string c = c1c2...cn is called H-irreducible if n = 1
or cn 6= ε. Hence are true the following two assertions:

1. l∗(c) ≤ max{l∗(a), l∗(b)} for any H-irreducible element c ∈MdH (a, b).
2. If the string c ∈MdH (a, b) is not H-irreducible, then there exist a unique

H-irreducible string c′ ∈ MdH (a, b) and a number n = l∗(c)− l∗(c′) such that
c = c′ · εn.
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Assume that

M̄dH (a, b) = {x ∈MdH (a, b) : l∗(c) = max{l∗(a), l∗(b)}}

is the set of H-weighted d-means c of the oriented pair of strings a, b ∈ L∗(A)
with l∗(c) = max{l∗(a), l∗(b)}.

Remark 2.5. We present below the algorithm of construction of elements from
MdH (a, b). From the above remark it follows that is sufficient to construct the
strings c ∈ MdH (a, b) for which l∗(c) = max{l∗(a), l∗(b)}. Fix two strings
a, b ∈ L∗(A) with p = l∗(a) and l∗(b) = q.

1. We put n = max{p, q}.
2. We construct:
- a′ = a = a1a2...an and b′ = b = b1b2...bn if p = q;
- a′ = a · εq−p = a1a2...an and b′ = b b1b2...bn if p < q;
- a′ = a = a1a2...an and b′ = b · εp− q = b1b2...bn if q < p.
3. For each i ≤ n we fix ci ∈ Md(ai, bi) = {x ∈ Ā : d(ai, x) + d(x, bi) =

d(ai, bi)}.
4. Put c = c1c2...cn.
5. Have c ∈ M̄dH (a, b).
By construction, we have dH(a, b) = dH(a′, b′) = dH(a′, c) + dH(c, b′) =

dH(a, c) + dH(c, b) and c ∈MdH (a, b).
One can observe that from dH(a, c) + dH(c, b) = dH(a, b) it follows that

ci ∈ Md(ai, bi) for each i ≤ n. Therefore, any string c ∈ M̄dH (a, b) with
l∗(c) = n can be constructed by the above algorithm. Hence that algorithm
permit to construct all strings c ∈MdH (a, b)

The number m∗(a, b) = |M̄dH (a, b)| is estimated by the following relations:

m∗(a, b) = Π{|Md(ai, bi)|i ≤ n} ≥ 2|{i≤n:ai 6=bi}|.

If d is discrete metric on Ā with d(x, y) = 1 for any pair of distinct elements
x, y ∈ Ā, then Md(x, y) = {x, y} for any x, y ∈ Ā and

m∗(a, b) = 2|{i≤n:ai 6=bi}| for any a, b ∈ L∗(A).

3. PROBLEM OF CONVEXITY

Let (X, d) be a metric space. A subset L ⊆ X is called d-convex ifMd(a, b) ⊆
L for any a, b ∈ L.

On the alphabet Ā = A ∪ {ε} consider the distance metric d : d(x, x) = 0
and d(x, y) = 1 for distinct x, y ∈ Ā. Any subset of (A, d) is d-convex. In 2016
Professor Gh. Zbăganu informed us about the following questions: Question
1. Is it true that the set MdH (a, b) is dH-convex in (L∗(A), dH) for any
a, b ∈ L∗(A)?
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Question 2. Is it true that the set MdG(a, b) is dG-convex in (L∗(A), dG)
for any a, b ∈ L∗(A)?

Theorem 3.1. The set MdH (a, b) is dH-convex in (L∗(A), dH) for any a, b ∈
L∗(A).

Proof. We can assume that a = a1a2...an and b = b1b2...bn. Then x =
x1x2...xn ∈MdH (a, b) if and only if xi ∈ {ai, bi} for any i ≤ n. If c = c1c2...cn,
f = f1f2...fn are two strings from MdH (a, b) and x = x1x2...xn ∈ MdH (c, f),
then xi ∈ {ci, fi} ⊆ {ai, bi} ∪ {ai, bi} = {ai, bi} and x ∈ MdH (a, b). The proof
is complete.

Theorem 3.2. There exists a finite alphabet A and two strings a, b ∈ L(A)
for which the set MdG(a, b) is not dG-convex.

Proof. The proof follows from the following examples.

Example 3.1. Let A = {B,C,D, J,K,L,M,N,O, P,Q,R},

a = DJCJNRCKCRBP, b = DBCNJROCLCRPM,

a′ = DJCNJNRCKCRBP, b′ = DBCJNJROCLCRBPM,

c = DJCJNJNROCKCRBPM.

For the above strings, we have that:

dG(a, b) = 7, dG(a, a′) = 1, dG(a′, b) = 6, dG(a, b′) = 5,

dG(b′, b) = 2, dG(a′, b′) = 6, dG(a′, c) = dG(c, b′) = 3,

dG(a, c) = 4, dG(c, b) = 5.

Hence a′, b′ ∈ MdG(a, b), c ∈ MdG(a′, b′), but c /∈ MdG(a, b). Therefore, it
follows that the set MdG(a, b) is not convex.

In construction of strings a′, b′ and c we used the dG-optimal parallel rep-
resentations of pairs of strings a, b and a′, b′ respectively. The string a′ is
constructed using the following dG-optimal parallel representations:(

D
D

)
J
B

(
C
C

)
ε
N

(
J
J

)
N R
R O

(
C
C

)
K
L

(
C R
C R

)
B P
P M

The string b′ is constructed using the following dG-optimal parallel represen-
tations:(

D

D

)
J

B

(
C

C

)
J

ε

(
N

N

)
ε

J

(
R

R

)
ε

O

(
C

C

)
K

L

(
C R

C R

)
B

ε

(
P

P

)
ε

M

The string c is constructed using the following dG-optimal parallel representa-
tions:
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(
D

D

)
J

B

(
C

C

)
ε

J

(
N J

N J

)
N

ε

(
R

R

)
ε

O

(
C

C

)
K

L

(
C R B P

C R B P

)
ε

M

Example 3.2. Let alphabet A and strings a, b, a′, b′, c be as in the previous
example. We put m = QQQQQQQQ. Consider the strings amb, bma, a′ma′,
b′mb′ and cmc. We obtain the following:

dG(amb, bma) = 14,

dG(amb, a′ma′) = dG(a′ma′, bma) = 7,

dG(amb, b′mb′) = dG(b′mb′, bma) = 7,

dG(a′ma′, b′mb′) = 12,

dG(a′ma′, cmc) = dG(cmc, b′mb′) = 6,

dG(amb, cmc) = dG(cmc, bma) = 9.

Hence a′ma′, b′mb′ are from the middle of the segment MdG(amb, bma), the
string cmc is from the middle of the segment MdG(a′ma′, b′mb′), but cmc /∈
MdG(amb, bma).

4. CONCLUSIONS

The optimal decompositions:

permit the calculation of the median of two strings;

permit the calculation of the weighted means of two strings;

describe the proper similarity of two strings;

permit to obtain long common sub-sequences;

permit to calculate the distance between strings;

permit to solve the problem of text editing and correction;

permit to appreciate changeability of information over time;

permit to solve the problem of convexity of the weighted means of two
strings.
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Abstract In this paper, using the Riemann-Liouville fractional integral operator, we es-
tablish new results that generalize some theorems of the work: [A note on
some new fractional results involving convex functions. Acta Math. Univ.
Comenianae, Vol. LXXXI, 2, 2012]. We also discuss other integral inequali-
ties generalizing some theorems in the paper: [Some new results of two open
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1. INTRODUCTION

In [5] W.J. Liu et al. studied some interesting inequalities for a convex
function (x− a)δ for δ ≥ 1 and established the following result:

Theorem 1.1. Let β > 0 and f ≥ 0 be a continuous function on [a, b] with

b∫
x

fmin{1,β}(t)dt ≥
b∫
x

(t− a)min{1,β}dt, x ∈ [a, b]. (1)

Then,
b∫
a

fα+β(x)dx ≥
b∫
a

(x− a)αfβ(x)dx (2)

is valid for all α > 0.

Then, in 2009, W.J. Liu, Q. Ngo and V.N. Huy [6] proved the following
important result includes more general convex function :

Theorem 1.2. Let f, g, h be positive three continuous functions on [a, b], with

f ≤ h on [a, b] and such that f
h is decreasing and f, g are increasing. If ϕ is a

89
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convex function with ϕ(0) = 0, then

b∫
a
f(x)dx

b∫
a
h(x)dx

≥

b∫
a
ϕ(f(x))g(x)dx

b∫
a
ϕ(h(x))g(x)dx

.

Recently, Z. Dahmani [1] established generalization for the above theorem,
he proved that for any three positive continuous functions f, g and h defined
on [a, b], with f ≤ h, f and g are increasing and f

h is decreasing, then for any
x ∈]a, b], we have:

Jαa f(x)

Jαa h(x)
≥ Jαa [ϕ(f)g](x)

Jαa [ϕ(h)g](x)
,

where α > 0 and ϕ is a positive and convex function, with ϕ(0) = 0.
Very recently, A. Kashuri and R. Liko [4] proposed another result, as a response
to an open problem posed by Liu et al. in [6]. In fact, for three positive
continuous functions f, g and h defined on [a, b], such that f ≤ h on [a, b], f, g

are increasing and f
h is decreasing, if ϕ is a positive and convex function, with

ϕ(0) = 0, the authors of [4] proved that the inequality

b∫
a
f(x)dx

b∫
a
h(x)dx

≥
(
b∫
a
ϕ(f(x))g(x)dx)δ

(
b∫
a
ϕ(h(x))g(x)dx)λ

is valid, under some conditions on λ, δ, ϕf(a), ϕf(b), g(a), g(b). Other impor-
tant results introducing a parameter λ and generalizing Theorem 1.1 are also
discussed by the authors of [4].
In this paper, we prove new classical and fractional integral inequalities that
generalise some integral results of the papers [1, 4].

2. RIEMANN-LIOUVILLE INTEGRATION

We recall the following definition and some properties.

Definition 2.1. [3] The Riemann-Liouville fractional integral operator of or-
der δ ≥ 0, for a continuous function f on [a, b] is defined as

Jδaf(x) = 1
Γ(δ)

∫ x
a (x− u)δ−1f(u)du; δ > 0, a < x ≤ b,

J0
af(x) = f(x).

(3)
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We give the semigroup property:

Jαa J
δ
af(x) = Jα+δ

a f(x), α ≥ 0, δ ≥ 0, (4)

In the particular case where f(x) = (x− a)β on [a, b], we have

Jδa(x− a)β =
Γ(β + 1)

Γ(δ + β + 1)
(x− a)δ+β. (5)

3. MAIN RESULTS

Theorem 3.1. Let f, g and h be three positive continuous functions on [a, b]

with f ≤ h. Suppose that f and g are increasing and f
h is a decreasing function,

and assume that ϕ is a positive and convex function, with ϕ(0) = 0. Then for
any x ∈]a, b], we have:

Jαa f(x)

Jαa h(x)
≥
(
Jαa [ϕ(f)g](x)

Jαa [ϕ(h)g](x)

)λ
, (6)

where λ ≥ 1, α > 0.

Proof. Since f ≤ h, then for all λ ≥ 1, we can write:

Jαa f(x)

Jαa h(x)
≥
(
Jαa f(x)

Jαa h(x)

)λ
, x ∈]a, b]. (7)

On the other hand, for any x ∈]a, b], we have (see [1]):

Jαa f(x)

Jαa h(x)
≥ Jαa [ϕ(f)g](x)

Jαa [ϕ(h)g](x)
. (8)

Therefore, it yields that(
Jαa f(x)

Jαa h(x)

)λ
≥
(
Jαa [ϕ(f)g](x)

Jαa [ϕ(h)g](x)

)λ
, x ∈]a, b]. (9)

Using (7) and (9) we obtain (6).

Remark 3.1. Taking λ = 1 in Theorem 3.1, we obtain Theorem 3.5 proved
in [1].

Another main result is the following theorem, in which we will generalize a
theorem in the paper [4]. We prove:

Theorem 3.2. Let f, g and h be three positive continuous functions on [a, b],

such that f ≤ h on [a, b], f and g are increasing and f
h is decreasing. Assume
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that ϕ is a positive and convex function, with ϕ(0) = 0.
In the case where 1 ≤ θ < λ, if ϕ[f(a)]g(a)Jαa (1) ≥ 1, then, we have:

Jαa f(x)

Jαa h(x)
≥ (Jαa [ϕ(f)g](x))θ

(Jαa [ϕ(h)g](x))λ
, x ∈]a, b], α > 0. (10)

The same inequality is valid in the case: 1 ≤ λ < θ, under the condition:
ϕ[f(b)]g(b)Jαa (1) ≤ 1.

Proof. We prove the theorem in two steps:
Case 1: For 1 ≤ θ < λ, there exists s > 0, such that λ = θ + s.
So, we have:

(Jαa [ϕ(f)g](x))θ(
Jβa [ϕ(h)g](x)

)λ =

(
Jαa [ϕ(f)g](x)

Jαa [ϕ(h)g](x)

)θ
× 1

(Jαa [ϕ(h)g](x))s

Thanks to Theorem 3.1, we obtain

(Jαa [ϕ(f)g](x))θ

(Jαa [ϕ(h)g](x))λ
≤ Jαa f(x)

Jαa h(x)
× 1

(Jαa [ϕ(h)g](x))s
.

Now, we shall prove that (Jαa [ϕ(h)g](x))s ≥ 1.

We have:

Jαa [ϕ(h)g](x) = Jαa [
ϕ(h)

h
hg](x)

≥ Jαa [
ϕ(h)

h
fg](x).

Since ϕ is a convex function, then, for all x, y, we can write

(y − x)ϕ′(x) ≤ ϕ(y)− ϕ(x).

Hence for y = 0, we obtain xϕ′(x)− ϕ(x) ≥ 0. Therefore, we get(
ϕ(x)
x

)′
= xϕ′(x)−ϕ(x)

x2 ≥ 0, which implies that ϕ(x)
x is an increasing function

and by the hypothesis of f ≤ h, we conclude that ϕ[f ]
f ≤

ϕ[h]
h .

Consequently, we obtain

Jαa [
ϕ(h)

h
fg](x) ≥ Jαa [

ϕ(f)

f
fg](x).
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On the other hand, since f, g and ϕ(t)
t are increasing, then [ϕ(f)

f fg](x) is

increasing. So, we have ∀x ∈ [a, b], [ϕ(f)
f fg](x) ≥ ϕ[f(a)]g(a).

Finally,

Jαa [
ϕ(f)

f
fg](x) ≥ ϕ[f(a)]g(a)Jαa (1) ≥ 1.

Case 2: For 1 ≤ λ < θ, there exists s > 0, such that θ = λ+ s.
We have

(Jαa [ϕ(f)g](x))θ

(Jαa [ϕ(h)g](x))λ
=

(
Jαa [ϕ(f)g](x)

Jαa [ϕ(h)g](x)

)λ
×
(
Jβa [ϕ(f)g](x)

)s
.

≤ Jαa f(x)

Jαa h(x)
×
(
Jβa [ϕ(f)g](x)

)s
.

Now, we need to prove that
(
Jβa [ϕ(f)g](x)

)s
≤ 1.

Since ϕ(f)g is increasing on [a, b], we have [ϕ(f)g](x) ≤ ϕ(f(b))g(b), ∀x ∈
[a, b], which implies

(Jαa [ϕ(f)g](x))s ≤ (ϕ(f(b))g(b)Jαa (1))s ≤ 1.

The proof of Theorem 3.2 is thus achieved.

Remark 3.2. In Theorem 3.2, if we take α = 1, we obtain Theorem 2.2 of
[4].

Changing the hypotheses of Theorem 2.1 in [4] by considering two integral
conditions on f , we obtain the following result:

Theorem 3.3. Let f : [a, b]→ R+ be a continuous function, such that:

b∫
x

(u− a)min(1,β)du ≤
b∫
x

fmin(1,β)(u)du, x ∈ [a, b], β > 0 (11)

and

Γ(α)

Γ(α− n+ 1)
(b− a)n+1

b∫
a

fβ(t)dt ≤ 1, n = [α] , α > 0. (12)

Then for any λ ≥ 1, b− a ≥ 1, we have

b∫
a

fα+β(u)du ≥

 b∫
a

(u− a)αfβ(u)du

λ

.
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Proof. For λ ≥ 1, we have b∫
a

(u− a)αfβ(u)du

λ

=

 b∫
a

(u− a)αfβ(u)du

 b∫
a

(u− a)αfβ(u)du

λ−1

.

By Theorem 2.1 of [5], we can write
b∫
a

(u− a)αfβ(u)du ≤
b∫
a
fα+β(u)du.

Therefore, b∫
a

(u− a)αfβ(u)du

λ

≤
b∫
a

fα+β(u)du

 b∫
a

(u− a)αfβ(u)du

λ−1

.

Now we need to prove that
b∫
a

(u− a)αfβ(u)du ≤ 1.

We have

b∫
a

(u− a)αfβ(u)du = −(u− a)α
b∫
u

fβ(t)du|u=b
u=a

+α

b∫
a

(u− a)α−1

b∫
u

fβ(t)dtdu

= α

b∫
a

(u− a)α−1

b∫
u

fβ(t)dtdu.

Hence, we can write

b∫
a

(u− a)αfβ(u)du = α

b∫
a

(u− a)α−1

b∫
u

fβ(t)dtdu

= α(α− 1)

b∫
a

(u− a)α−2

b∫
u

b∫
u1

fβ(t)dtdu1du

...
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= α(α− 1)...(α− n+ 1)

b∫
a

(u− a)α−n

×
b∫
u

b∫
u1

...

b∫
un−1

fβ(t)dtdun−1...du1du.

On the other hand, since (u− a)α−n ≤ (b− a), it follows that

b∫
a

(u− a)αfβ(u)du ≤ α(α− 1)...(α− n+ 1)

b∫
a

(b− a)

×
b∫
u

b∫
u1

...

b∫
un−1

fβ(t)dtdun−1...du1du

= α(α− 1)...(α− n+ 1)

b∫
a

b∫
a

b∫
a

...

b∫
a

fβ(t)dtdun−1...du1du0du

= α(α− 1)...(α− n+ 1)

b∫
a

fβ(t)dt

×
b∫
a

b∫
a

...

b∫
a

dun−1...du1du0du

= α(α− 1)...(α− n+ 1)(b− a)n+1

b∫
a

fβ(t)dt

=
Γ(α)

Γ(α− n+ 1)
(b− a)n+1

b∫
a

fβ(t)dt ≤ 1.

We prove also the following theorem:

Theorem 3.4. Let f : [a, b] −→ R+ be a continuous function, such that:∫ b

x
(u− a)min{1,β}du ≤

∫ b

x
fmin{1,β}(u)du, x ∈ [a, b], β > 0
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and
Γ(α)

Γ(α− n+ 1)
(b− a)n+1Jδaf

β(b) ≤ 1;n = [α], α > 0.

Then, for all λ ≥ 1, δ ≥ 1, b− a ≥ 1, we have:

Jδaf
α+β(b) ≥

(
Jδa(x− a)αfβ(x)|x=b

)λ
.

Proof. For λ ≥ 1, we have(
Jδa(x− a)αfβ(x)|x=b

)λ
=
(
Jδa(x− a)αfβ(x)|x=b

)(
Jδa(x− a)αfβ(x)|x=b

)λ−1
.

Now, we begin by proving that Jδa(x− a)αfβ(x)|x=b ≤ Jδafα+β(b).
To do this, we need to prove that

Jδa(x− a)αfβ(x)|x=b ≥
Γ(α+ β + 1)(b− a)α+β+δ

Γ(α+ β + δ + 1)
. (13)

For β ∈]0, 1], we have

Jδa(t− a)αfβ(t) | t=b =
1

Γ(δ)

∫ b

a
(b− x)δ−1(x− a)αfβ(x)dx

=
1

Γ(δ)

[
(b− x)δ−1(x− a)α

∫ b

x
fβ(u)du |x=b

x=a

+
1

Γ(δ)

∫ b

a
g(x)

(∫ b

x
fβ(u)du

)
dx
]

=
1

Γ(δ)

∫ b

a
g(x)

(∫ b

x
fβ(u)du

)
dx,

where g(x) = (δ − 1)(b− x)δ−2(x− a)α + α(b− x)δ−1(x− a)α−1.
Thanks to the imposed condition, we observe that

1
Γ(δ)

∫ b
a g(x)

(∫ b
x f

β(u)du
)
dx ≥ 1

Γ(δ)

∫ b

a
g(x)

(∫ b

x
(u− a)βdu

)
dx

=
1

(β + 1)Γ(δ)

∫ b

a
g(x)

[
(b− a)β+1 − (x− a)β+1

]
dx

=
Γ(α+ β + 1)(b− a)α+β+δ

Γ(α+ β + δ + 1)
.

(14)
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If we take β = 1 in (14), then we get

Jδa(t− a)αf(t)|t=b ≥
Γ(α+ 2)

Γ(α+ δ + 2)
(b− a)α+δ+1. (15)

Using the following inequality (see Lemma 2.2 of [7]):

ps+ qr ≥ sprq, ∀p, q, s, r > 0, p+ q = 1, (16)

with p = 1
β , q = β−1

β , s = fβ(x) and r = (x− a)β−1, we obtain

1

β
fβ(x) +

β − 1

β
(x− a)β ≥ f(x)(x− a)β−1.

Consequently,

fβ(x) + (β − 1)(x− a)β ≥ βf(x)(x− a)β−1. (17)

Multiplying both sides of (17) by 1
Γ(δ)(b − x)δ−1(x − a)α and integrating the

resulting inequality with respect to x over [a, b], yields

Jδa(t− a)αfβ(t)|t=b + (β − 1)Jδa(t− a)α+β|t=b ≥ βJδa(t− a)α+β−1f(t)|t=b.

Then, thanks to (15), we obtain

Jδa(t−a)αfβ(t)|t=b+(β−1)Jδa(t−a)α+β|t=b ≥ β
Γ(α+ β + 1)

Γ(α+ β + δ + 1)
(b−a)α+β+δ.

Hence,

Jδa(t− a)αfβ(t)|t=b ≥
Γ(α+ β + 1)

Γ(α+ β + δ + 1)
(b− a)α+β+δ. (18)

Now, we prove that Jδa(x− a)αfβ(x)|x=b ≤ Jδafα+β(b).
As before, by Lemma 2.2 of [7]), we get

β

α+ β
fα+β(x) +

α

α+ β
(x− a)α+β ≥ (x− a)αfβ(x). (19)

Multiplying both sides of (19) by 1
Γ(δ)(b−x)δ−1 and integrating the resulting

inequality with respect to x over [a, b], we obtain

β

α+ β
Jδaf

α+β(x)|x=b +
α

α+ β
Jδa(x− a)α+β|x=b ≥ Jδa(x− a)αfβ(x)|x=b.
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Therefore,

βJαa f
α+β(x)|x=b+αJ

δ
a(x−a)α+β|x=b ≥ αJδa(x−a)αfβ(x)|x=b+βJ

δ
a(x−a)αfβ(x)|x=b.

Using (18), we obtain

βJδaf
α+β(x)|x=b + α

Γ(α+ β + 1)(b− a)α+β+δ

Γ(α+ β + δ + 1)
≥ α

Γ(α+ β + 1)(b− a)α+β+δ

Γ(α+ β + δ + 1)

+βJδa(t− a)αfβ(t)|t=b.

Hence
Jδaf

α+β(b) ≥ Jδa(t− a)αfβ(t)|t=b. (20)

Now, we need to show that(
Jδa(x− a)αfβ(x)|x=b

)λ−1
≤ 1,

which is equivalent to

Jδa(x− a)αfβ(x)|x=b ≤ 1.

An integration by parts allows us to obtain:

Jδ(x− a)αfβ(x)|x=b =
1

Γ(δ)

b∫
a

(b− u)δ−1(u− a)αfβ(u)du

=
1

Γ(δ)

[
− (u− a)α

b∫
u

(b− t)δ−1fβ(t)du|u=b
u=a

+α

b∫
a

(u− a)α−1

b∫
u

(b− t)δ−1fβ(t)dtdu
]

=
1

Γ(δ)

α b∫
a

(u− a)α−1

b∫
u

(b− t)δ−1fβ(t)dtdu


=

1

Γ(δ)

α(α− 1)

b∫
a

(u− a)α−2

b∫
u

b∫
u1

(b− t)δ−1fβ(t)dtdu1du


...
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=
1

Γ(δ)

[
α(α− 1)...(α− n+ 1)

b∫
a

(u− a)α−n

×
b∫
u

b∫
u1

...

b∫
un−1

(b− t)δ−1fβ(t)dtdun−1...du1du
]
.

On the other hand, using the fact that (u− a)α−n ≤ (b− a), we can write

Jδ(x− a)αfβ(x)|x=b ≤
1

Γ(δ)

[
α(α− 1)...(α− n+ 1)

b∫
a

(b− a)

×
b∫
u

b∫
u1

...

b∫
un−1

(b− t)δ−1fβ(t)dtdun−1...du1du
]

=
1

Γ(δ)

[
α(α− 1)...(α− n+ 1)

×
b∫
a

b∫
a

b∫
u

b∫
u1

...

b∫
un−1

(b− t)δ−1fβ(t)dtdun−1...du1du0du
]

≤ 1

Γ(δ)

[
α(α− 1)...(α− n+ 1)

×
b∫
a

b∫
a

b∫
a

...

b∫
a

(b− t)δ−1fβ(t)dtdun−1...du1du0du
]

=
1

Γ(δ)

[
α(α− 1)...(α− n+ 1)

b∫
a

(b− t)δ−1fβ(t)dt

×
b∫
a

b∫
a

...

b∫
a

dun−1...du1du0du
]

= α(α− 1)...(α− n+ 1)(b− a)n+1Jδaf
β(b).

=
Γ(α)

Γ(α− n+ 1)
(b− a)n+1Jδaf

β(b).

≤ 1.

Theorem 3.4 is thus proved.
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Remark 3.3. If we take δ = 1 in Theorem 3.4, we obtain Theorem 3.3.

To finish, we present to the reader the following corollary:

Corollary 3.1. Let f and h be two positive continuous functions on [a, b],

with f ≤ h, f is increasing and f
h is decreasing. Then, for any x ∈]a, b], we

have:
Jδaf(x)

Jδah(x)
≥
(
Jδa(x− a)αfβ(x)

Jδa(x− a)αhβ(x)

)λ
,

where δ, α, β > 0, λ ≥ 1.

Proof. We take ϕ(x) = xβ and g(x) = (x− a)α in Theorem 3.1.
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Abstract A portfolio composition, where the weights are supposed to depend on the
investor’s risk tolerance, is considered. The portfolio’s certainty equivalent re-
turn has to be maximized. The mathematical model leads to a convex problem.
The attached Kuhn-Tucker system is solved using the critical lines method.

Keywords: Kuhn-Tucker system, portfolio composition, critical lines.

2010 MSC: 90C25, 90C90, 91G10.

1. INTRODUCTION

Starting with the pioneering work of Markowitz from 1952 [9], the portfolio
theory was studied by many researchers. Among those with recent contri-
butions in this field we quote Jacobs, Levy and Markowitz [6], Bailey and
López de Prado [1], Kwan [8], Norstad [11], Cumova, Moreno and Nawrocki
[3], Marling and Emanuelsson [10], Calvo, Ivorra and Liern [2], Kan and Zhou
[7].

The aim of our study is to illustrate how to compose an efficient portfolio
with positive weights and investments limits for five companies.

Consider Pt the closing price of a stock at the end of time t and Pt−1 the
closing price of a stock at the end of earlier time t−1. It follows that Pt−Pt−1

is the price return of the stock at time t
The discretely compounded rate of return in the period (t− 1, t) is:

• Rt = Pt−Pt−1

Pt−1
= Pt

Pt−1
− 1, if the stock has not paid dividend;

• Rt = Pt+Dt
Pt−1

− 1, if the stock paid dividend Dt

The continuously compounded rate of return in the period (t−1, t) is defined
as:
• Rt = ln Pt

Pt−1
, if the stock has not paid dividend;

• Rt = ln Pt+Dt
Pt−1

, if the stock paid dividend Dt.

The discretely compounded rate of return is slightly larger than the contin-
uously compounded return rate. In the case when it is assumed that historical

101
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returns denote the distribution of the returns for the coming period, continu-
ously compounded return is more appropriate.

In our study for experimental purpose five firms from New York Stock Ex-
change (NYSE) were selected, namely, Applied Materials (AMAT), Amazon
(AMZN), Alibaba Group Holding Limited (BABA), Advanced Micro Devices,
Inc. (AMD) and AT&T (T).

Data were downloaded from http://finance.yahoo.com searching the histor-
ical data for every company. They covered the period between February 2015
and April 2016. Monthly adjusted price are used. The observations were ex-
amined using Excel and Stata. The continuously compounded rates of return
for the five firms were computed. They are given in Table 1.

Date AMAT AMZN BABA AMD T

02.05.2016 0.1016 0.0635 0.0238 0.0863 -0.0096

01.04.2016 -0.0341 0.1053 -0.0268 0.2196 0.0033

01.03.2016 0.1155 0.0718 0.1385 0.2865 0.0583

01.02.2016 0.0722 -0.0605 0.0262 -0.0277 0.0244

04.01.2016 -0.0562 -0.1410 -0.1926 -0.2659 0.0608

01.12.2015 -0.0053 0.0165 -0.0340 0.1957 0.0217

02.11.2015 0.1183 0.0603 0.0030 0.1072 0.0048

01.10.2015 0.1324 0.2011 0.3518 0.2091 0.0424

01.09.2015 -0.0910 -0.0020 -0.1144 -0.0510 -0.0189

03.08.2015 -0.0701 -0.0444 -0.1696 -0.0642 -0.0453

01.07.2015 -0.1018 0.2112 -0.0489 -0.2179 -0.0090

01.06.2015 -0.0463 0.0113 -0.0822 0.0513 0.0280

01.05.2015 0.0220 0.0175 0.0942 0.0088 -0.0029

01.04.2015 -0.1310 0.1253 -0.0237 -0.1705 0.0734

02.03.2015 -0.1047 -0.0214 -0.0223 -0.1488 -0.0569

02.02.2015 0.0965 0.0698 -0.0455 0.1907 0.0486

Table 1. Continuously compounded rates of return.

Consider N stocks and let Ri,t be the stock i’s return rate at time t, t =
1, . . . , T and i = 1, . . . , N . We recall some well-known formulae from statistics:
• The mean of periodic returns percentages for the stock i is

Ri =
1

T

T∑
t=1

Ri,t.
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• The variance of the return rates for the company i is

σ2
i =

1

T

T∑
t=1

(Ri,t −Ri)2,

while the sample variance, used in our model (and denoted in the same way),
is

σ2
i =

1

T − 1

T∑
t=1

(Ri,t −Ri)2.

• The standard deviation is σi =
√
σ2
i .

• The covariance of the stocks i and j return rates is

covij =
1

T − 1

T∑
t=1

(Ri,t −Ri)(Rj,t −Rj).

• The correlation coefficient of the stocks i and j return rates is ρij =
covij
σiσj

.

Some numerical characteristics of the return rates for the five firms consid-
ered by us are given in Table 2.

AMAT AMZN BABA AMD T

Mean 0.0011 0.0428 -0.0077 0.0256 0.0140

Standard Error 0.0231 0.0230 0.0320 0.0427 0.0094

Median -0.0197 0.0389 -0.0253 0.0301 0.0133

Standard Deviation 0.0925 0.0920 0.1279 0.1706 0.0376

Sample Variance 0.0086 0.0085 0.0163 0.0291 0.0014

Kurtosis -1.6342 0.2295 3.4787 -1.1154 -0.5939

Skewness 0.1495 0.1194 1.3969 -0.1826 -0.2301

Range 0.2634 0.3522 0.5444 0.5524 0.1303

Minimum -0.1310 -0.1410 -0.1926 -0.2659 -0.0569

Maximum 0.1324 0.2112 0.3518 0.2865 0.0734

Sum 0.0181 0.6843 -0.1227 0.4093 0.2233

Count 16 16 16 16 16

Table 2. Summary statistics.
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Using the above formula for the covariance of the stocks i and j return
rates, the covariance matrix of the stocks return rates for our case-study is
obtained as follows:

AMAT AMZN BABA AMD T

AMAT 0.008 0.0014 0.0071 0.0107 0.001

AMZN 0.0014 0.0079 0.0064 0.0047 0.0005

BABA 0.0071 0.0064 0.0153 0.0112 0.0011

AMD 0.0107 0.0047 0.0112 0.0273 0.0013

T 0.001 0.0005 0.0011 0.0013 0.0013

Let xi be the weight of security i included in the portfolio, i = 1, . . . , N .
Thus, if S is the total amount of money which will be invested, then xiS will

be invested in firm i. Obviously,
N∑
i=1
xi = 1.

The portfolio expected return is defined as:

E (Rp) =

N∑
i=1

xiE (Ri) ,

where E (Ri) is the expected return value of security i.

The portfolio variance is defined as:

σ2
p (x) =

N∑
i=1

N∑
j=1

xixjcovij .

In our case-study we consider that the expected return of security i is the
mean of periodic returns percentages, thus the portfolio expected return reads:

E (Rp) = 0.0011x1 + 0.0428x2 − 0.0077x3 + 0.0256x4 + 0.014x5.

The portfolio variance reads:

σ2
p (x) = 0.008x2

1 + 0.0079x2
2 + 0.0153x2

3 + 0.0273x2
4 + 0.0013x2

5

+0.0028x1x2 + 0.0142x1x3 + 0.0214x1x4 + 0.002x1x5 + 0.0128x2x3

+0.0094x2x4 + 0.001x2x5 + 0.0224x3x4 + 0.0022x3x5 + 0.0026x4x5.
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A simple computation shows that σ2
p (x) is a positive definite quadratic

form, so it is a convex function.

2. THE MATHEMATICAL MODEL FOR
OPTIMAL PORTFOLIO SELECTION WITH
POSITIVE WEIGHTS AND INVESTMENTS
LIMITS

Consider r > 0 the parameter that quantifies the investor’s risk tolerance.

As the portfolio’s certainly equivalent return is E (Rp) −
σ2
p(x)

r , we intend
to minimize σ2

p (x) − rE (Rp) . In addition, we suppose that the weight xi is
limited by ci. Thus, the problem can be written as:

(min)f (x) =

N∑
i=1

N∑
j=1

xixjcovij − r
N∑
i=1

xiE (Ri)

N∑
i=1

xi = 1

0 ≤ xi ≤ ci, i = 1, ..., N.

As the function f is the sum between a positive definite quadratic form and
a linear function, it follows that f is a convex function. The constraints are
linear, so we have a convex differentiable programming problem, which can be
solved using the Kuhn-Tucker theory.

The associated Lagrange-type function L reads:

L =
N∑
i=1

N∑
j=1

xixjcovij−r
N∑
i=1

xiE (Ri)−θ

(
N∑
i=1

xi − 1

)
−

N∑
i=1

δixi+
N∑

i=1

ηi(xi−ci),

where θ ∈ R and δi ≥ 0, ηi ≥ 0, i = 1, ..., N.
Thus, the Kuhn-Tucker system reads:

∂L
∂xi

= 0, i = 1, ..., N
N∑
i=1
xi = 1

xi ≥ 0, i = 1, ..., N
xi ≤ ci, i = 1, ..., N
δixi = 0, i = 1, ..., N
ηi(xi − ci) = 0, i = 1, ..., N.
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For our study N = 5 and we consider that all investments limits are ci = 0.6,
i = 1, . . . , 5. Thus, the Lagrange function is:

L = 0.008x2
1 + 0.0079x2

2 + 0.0153x2
3 + 0.0273x2

4 + 0.0013x2
5 + 0.0028x1x2

+ 0.0142x1x3 + 0.0214x1x4 + 0.002x1x5 + 0.0128x2x3 + 0.0094x2x4

+ 0.001x2x5 + 0.0224x3x4 + 0.0022x3x5 + 0.0026x4x5

− r (0.0011x1 + 0.0428x2 − 0.0077x3 + 0.0256x4 + 0.014x5)

− θ (x1 + x2 + x3 + x4 + x5 − 1)−
5∑
i=1

δixi +

5∑
i=1

ηi(xi − 0.6).

The Kuhn-Tucker system reads:

0.016x1 + 0.0028x2 + 0.0142x3 + 0.0214x4

+0.002x5 − 0.0011r − θ − δ1 + η1 = 0,
0.0028x1 + 0.0158x2 + 0.0128x3 + 0.0094x4

+0.001x5 − 0.0428r − θ − δ2 + η2 = 0,
0.0142x1 + 0.0128x2 + 0.0306x3 + 0.0224x4

+0.0022x5 + 0.0077r − θ − δ3 + η3 = 0,
0.0214x1 + 0.0094x2 + 0.0224x3 + 0.0546x4

+0.0026x5 − 0.0256r − θ − δ4 + η4 = 0,
0.002x1 + 0.001x2 + 0.0022x3 + 0.0026x4

+0.0026x5 − 0.014r − θ − δ5 + η5 = 0,
x1 + x2 + x3 + x4 + x5 = 1,
0 ≤ xi ≤ 0.6, i = 1, ..., 5
δixi = 0, i = 1, ..., 5
ηi(xi − 0.6) = 0, i = 1, ..., 5.

with θ ∈ R and δi ≥ 0, ηi ≥ 0, i = 1, ..., 5.
This system consists both of equations and inequations and have 16 un-

known variables, namely xi, δi, ηi, i = 1, . . . , 5 and θ. Obviously, the solutions
depend on the values of the parameter r.

Remark that the status of any security can be in, out or up. More precisely:
• The status is in, when 0 < xi < ci = 0.6. In this case, δi = 0 and ηi = 0.
• The status is out, when xi = 0. In this case ηi = 0.
• The status is up, when xi = ci = 0.6. In this case, δi = 0.
In order to solve the Kuhn-Tucker system for different values of the in-

vestor’s risk tolerance r, we follow the lines in Kwan [8]. Thus, the initial
portfolio consists of those securities which have the highest expected return
and we follow the steps 1-6 below.
Step 1. The initial portfolio consists of AMZN and AMD, which have the
highest expected return. Thus x2 = 0.6, x4 = 0.4, so AMZN is up, while AMD
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is in. It follows δ2 = δ4 = 0 and η4 = 0. As AMAT, BABA and T are out, we
get x1 = x3 = x5 = 0, so η1 = η3 = η5 = 0. Thus, the first 6 equations of the
Kuhn-Tucker system have the solution:

δ1 = −0.01724 + 0.0245r, δ3 = −0.01084 + 0.0333r,

δ5 = −0.02584 + 0.0116r, η2 = 0.01424 + 0.0172r,

θ = 0.02748 − 0.0256r.

From the conditions δi ≥ 0, i = 1, 3, 5, it follows r ≥ 2.224. The critical value
r = 2.224 is obtained when δ5 = 0. As r < 2.224, δ5 would become negative.
But δ5 ≥ 0, so δ5 must be chosen zero at the next step.
Step 2. As r < 2.224, δ5 = 0, so x5 > 0 and T must changes its status from
out to in. In addition, it follows η5 = 0. AMZN remains up, thus, x2 = 0.6
and δ2 = 0. AMD remains in, so δ4 = η4 = 0. AMAT and BABA are out,
thus x1 = x3 = 0 and η1 = η3 = 0. The Kuhn-Tucker system has the solution:

δ1 = −0.001 + 0.017r, δ3 = 0.005 + 0.0262r,

η2 = −0.0074 + 0.0269r, x4 = −0.0969 + 0.223r,

x5 = 0.4969 − 0.223r, θ = 0.00164 − 0.014r.

From the conditions δ1 ≥ 0, η2 ≥ 0 and x4, x5 ∈ [0, 0.6], it follows r ≥ 0.43.
Thus, the solutions from Step 2 are valid for r ∈ [0.43, 2.224]. The critical
value r = 0.43 is obtained for x4 = 0, so at the next step AMD must change
the status.
Step 3. As r < 0.43, x4 = 0, so AMD is now out and η4 = 0. AMZN remains
up, so x2 = 0.6 and and δ2 = 0. T is in, while AMAT and BABA remain out.
Thus, x1 = x3 = 0, δ5 = 0, η1 = η3 = η5 = 0, and the solution is:

δ1 = 0.00084 + 0.0129r, δ3 = 0.00692 + 0.0217r,

δ4 = 0.00504 − 0.0116r, η2 = −0.00824 + 0.0288r,

x5 = 0.4, θ = 0.00164 − 0.014r.

From the conditions δ4 ≥ 0, η2 ≥ 0, it follows r ≥ 0.286. Thus, the solutions
from Step 3 are valid for r ∈ [0.286, 0.43].
Step 4. As r < 0.286, η2 = 0, thus AMZN must change its status from up
to in, so 0 < x2 < 0.6. It follows δ2 = η2 = 0. As T remains in, δ5 = η5 = 0.
AMAT, BABA and AMD remain out, so it follows x1 = x3 = x4 = 0 and
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η1 = η3 = η4 = 0. The Kuhn-Tucker system has the solution:

δ1 = −0.00036 + 0.0171r, δ3 = 0.+ 0.04312r,

δ4 = 0.0008 + 0.0031r, x2 = 0.0975 + 1.756r,

x5 = 0.9024 − 1.7561r, θ = 0.0024 − 0.0168r.

From the conditions δ1 ≥ 0, x2, x5 ∈ [0, 0.6], it follows r ≥ 0.171. As the
critical value 0.171 is obtained when x5 = 0.6, at the next step T must be up.
The solution at Step 4 holds for r ∈ [0.171, 0.286].
Step 5. As r < 0.171, T change its status from in to up, so x5 = 0.6. Thus,
δ5 = 0. AMZN remains in, so δ2 = η2 = 0. AMAT, BABA and AMD remain
out, so x1 = x3 = x4 = 0 and η1 = η3 = η4 = 0. The Kuhn-Tucker system has
the solution:

δ1 = −0.0046 + 0.0417r, δ3 = −0.00048 + 0.0505r,

δ4 = −0.0016 + 0.0172r, η5 = 0.00496 − 0.0288r,

x2 = 0.4, θ = 0.00692 − 0.0428r.

From the constraints it follows that this solution holds for r ≥ 0.11. As
r = 0.11, the conditin δ1 ≥ 0 is violated, so at the next step δ1 must be zero,
thus x1 > 0.
Step 6. As r < 0.11, AMAT change its status from out to in. Thus, δ1 =
η1 = 0. T remains up, so x5 = 0.6 and δ5 = 0. AMZN remains in, so
δ2 = η2 = 0. BABA and AMD remain out, so x3 = x4 = 0 and η3 = η4 = 0.
The Kuhn-Tucker system has the solution:

δ3 = 0.002 + 0.0275r, δ4 = 0.0027 − 0.0226r,

η5 = 0.0025− 0.0065r, x1 = 0.1755 − 1.5916r,

x2 = 0.2244 + 1.5916r, θ = 0.0046 − 0.0221r.

This solution holds for 0 < r < 0.11.

3. RESULTS AND COMMENTS

Synthesizing the results from the above section, the optimal portfolio com-
position for different values of the risk tolerance r is given in Table 3.
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Risk tolerance AMAT AMZN BABA AMD T

r ≥ 2.224 0 0.6 0 0.4 0

0.43 ≤ r < 2.224 0 0.6 0 −0.0969 + 0.223r 0.4969− 0.223r

0.286 ≤ r < 0.43 0 0.6 0 0 0.4

0.171 ≤ r < 0.286 0 0.0975 + 1.756r 0 0 0.9024− 1.7561r

0.11 ≤ r < 0.171 0 0.4 0 0 0.6

r < 0.11 0.1755− 1.5916r 0.2244 + 1.5916r 0 0 0.6

Table 3. Optimal weights depending on risk tolerance.

As the investor’s risk tolerance r takes its critical values, the corner portfo-
lios are obtained.

They are presented in Table 4, together with the corresponding portfolio
expected return. As expected, for big risk tolerance, the expected return is
also big.

Critical values of AMAT AMZN BABA AMD T Portfolio
risk tolerance expected return

r = 2.224 0 0.6 0 0.4 0 0.03592

r = 0.43 0 0.6 0 0 0.4 0.03128

r = 0.286 0 0.6 0 0 0.4 0.03128

r = 0.171 0 0.4 0 0 0.6 0.02552

r = 0.11 0 0.4 0 0 0.6 0.02552

r → 0 0.175 0.225 0 0 0.6 0.01822

Table 4. Corner portfolios.

In Figures 1-4, the optimal investment weights for AMAT, AMZN, AMD
and T are represented as functions of the risk tolerance using [14]. In these
figures, the dots correspond to the corner portfolios.

Fig. 1. Optimal AMAT investment weight as function of risk tolerance.

If the parameter r is eliminated between different optimal weights, the crit-
ical lines are obtained. Some of these critical lines are represented in Figures 5
and 6, namely those from the (x5, x4) and (x5, x2) planes. As in the previous
figures, the dots correspond to the corner portfolios.
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Fig. 2. Optimal AMZN investment weight as function of risk tolerance.

Fig. 3. Optimal AMD investment weight as function of risk tolerance.

Fig. 4. Optimal T investment weight as function of risk tolerance.

Two diagrams illustrating the optimal portfolio composition for big and
small risk tolerance are represented in Figures 7 and 8 respectively.
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Fig. 5. Critical lines in the (x5, x4) -plane.

Fig. 6. Critical lines in the (x5, x2)-plane.

Finally, the variation of the portfolio expected return with respect to the
risk tolerance is given in Table 5.
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Fig. 7. Optimal portfolio composition for big risk tolerance.

Fig. 8. Optimal portfolio composition for small risk tolerance (r → 0).

Risk tolerance Portfolio expected return

0 < r < 0.11 0.01819 + 0.06636r

0.11 ≤ r < 0.171 0.02552

0.171 ≤ r < 0.286 0.01680 + 0.05057r

0.286 ≤ r < 0.43 0.03128

0.43 ≤ r < 2.224 0.03015 + 0.00258r

r ≥ 2.224 0.03592

Table 5. Portfolio expected return depending on risk tolerance.
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The portfolio expected return as function of the risk tolerance is represented
in Figure 9 as a polygonal line, where the dots correspond to the corner port-
folios.

Fig. 9. The portfolio expected return as function of the risk tolerance.

4. CONCLUSIONS

For our case-study, 5 companies were chosen, namely AMAT, AMZN, BABA,
AMD and T. We considered that the expected return of every security is the
mean of periodic returns percentages obtained between February 2015 and
April 2016. Of course, in real life, many other factors, such as the news con-
cerning the firms or the changes of their management strategy influence these
expected returns. Thus, our study is just a theoretical one. The aim was to
find the optimal portfolio composition with positive weights and investments
for every company limited at 60%, for different values of the investor’s risk
tolerance. We obtained a convex problem, which was solved using the Kuhn-
Tucker theory. We found 5 critical values of the risk tolerance and the optimal
weights as functions of this tolerance. In our conditions, no investments have
to be made in BABA. For big risk tolerance, the optimal portfolio contains
AMZN and AMD, while for small risk tolerance, T, AMZN and AMAT have
to be selected.
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References
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1. INTRODUCTION

We assume that the reader is familiar with the fundamental results and the
standard notations of Nevanlinna’s theory (see e.g. [10, 12, 15]).

Definition 1.1. The order of a meromorphic function f is defined as

σ(f) = lim sup
r→+∞

log T (r, f)

log r
,

here T (r, f) is the Nevanlinna characteristic function of f which is defined by

T (r, f) = N (r, f) +m (r, f) , (r > 0) ,

where

N (r, f) =

r∫
0

[n (t,∞, f)− n (0,∞, f)]

t
dt+ n (0,∞, f) log r,

m (r, f) =
1

2π

2π∫
0

log+
∣∣∣f (reiθ)∣∣∣ dθ

115



116 Amina Ferraoun, Benharrat Beläıdi

and n (t,∞, f) denote the number of poles of f in the disc |z| ≤ t. If f is an
entire function, then

σ(f) = lim sup
r→+∞

log logM(r, f)

log r
,

where M(r, f) = max|z|=r |f(z)|.
Definition 1.2. The hyper-order of a meromorphic function f is defined as

σ2(f) = lim sup
r→+∞

log log T (r, f)

log r
.

If f(z) is an entire function, then

σ2(f) = lim sup
r→+∞

log log logM(r, f)

log r
.

Definition 1.3. The lower order of a meromorphic function f is defined as

µ(f) = lim inf
r→+∞

log T (r, f)

log r
.

If f is an entire function, then

µ(f) = lim inf
r→+∞

log logM(r, f)

log r
.

Definition 1.4. The convergence exponent of zeros and distinct zeros of a
meromorphic function f are respectively defined by

λ(f) = lim sup
r→+∞

logN(r, 1
f )

log r
, λ(f) = lim sup

r→+∞

logN(r, 1
f )

log r
,

where N
(
r, 1
f

) (
N
(
r, 1
f

))
is the integrated counting function of zeros (dis-

tinct zeros) of f in {z : |z| ≤ r}.
Definition 1.5. The hyper convergence exponent of zeros and distinct zeros
of a meromorphic function f are respectively defined by

λ2(f) = lim sup
r→+∞

log logN(r, 1
f )

log r
, λ2(f) = lim sup

r→+∞

log logN(r, 1
f )

log r
.

Definition 1.6. Let f (z) =
+∞∑
n=0

anz
n be an entire function. We denote by

µ (r) = max {|an| rn : n = 0, 1...} the maximal term of f . Then the central
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index of f is defined by

νf (r) = max {m;µ (r) = |am| rm} .

In the past years, many authors investigated the growth of solutions of
the higher order linear differential equation

f (k) +Ak−1(z)f (k−1) + · · ·+A1(z)f ′ +A0(z)f = F (z), (1.1)

when Aj(z) (j = 0, 1, · · · , k − 1), F (z)(6≡ 0) are entire (or meromorphic)
functions and obtained some valuable results, (see e.g. [2, 3, 4, 11, 12, 13, 14,
16]). In 2014, Wang and Liu investigated the properties of solutions of equation
(1.1) when there exists some coefficient As(z) (0 ≤ s ≤ k − 1) verifying the
condition µ(As) <

1
2 and obtained the following result.

Theorem A [14] Suppose that A0(z), · · · , Ak−1(z), F (z) are meromorphic
functions of finite order. If there exists some s ∈ {0, 1, · · · , k − 1} such that

b = max

{
σ(Aj), (j 6= s), σ(F ), λ

(
1

As

)}
< µ(As) <

1

2
,

then
(i) Every transcendental meromorphic solution f of (1.1) whose poles are of
uniformly bounded multiplicities, satisfies µ(As) ≤ σ2(f) ≤ σ(As). Further-
more, if F 6≡ 0, then we have µ(As) ≤ λ̄2(f) = λ2(f) = σ2(f) ≤ σ(As).
(ii) If s ≥ 2, then every non-transcendental meromorphic solution f of (1.1)
is a polynomial with deg f ≤ s − 1. If s = 0 or 1, then every nonconstant
solution f of (1.1) is transcendental.

When F (z) is of infinite order, Wang and Liu considered the linear dif-
ferential equation

f (k) +Ak−1(z)f (k−1) + · · ·+A1(z)f ′ +A0(z)f = QeP , (1.2)

when Aj(z) (j = 0, 1, · · · , k − 1), Q(z)(6≡ 0) are meromorphic functions and
P is a transcendental entire function and obtained the following result.

Theorem B [14] Suppose that A0(z), · · · , Ak−1(z), Q(z)(6≡ 0) are meromor-
phic functions of finite order, P is a transcendental entire function such that

max

{
σ(P ), σ(Q), σ(Aj), (1 ≤ j ≤ k − 1), λ

(
1

A0

)}
< µ(A0) <

1

2
.
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Then every solution f of (1.2) is transcendental, and every transcendental
meromorphic solution f of (1.2) whose poles are of uniformly bounded multi-
plicities satisfies µ(A0) ≤ λ̄2(f) = λ2(f) = σ2(f) ≤ σ(A0).

For k ≥ 2, we consider the linear differential equation

Ak(z)f
(k) +Ak−1(z)f (k−1) + · · ·+A1(z)f ′ +A0(z)f = F (z), (1.3)

when Aj(z) (j = 0, 1, · · · , k), F (z) are entire functions such that A0AkF 6≡ 0.
It well-known that if Ak(z) ≡ 1, then all solutions of (1.3) are entire functions,
but when Ak(z) is a nonconstant entire function, then equation (1.3) can
possess meromorphic solutions. For instance the equation

zf ′′′ + 4f ′′ +

(
−1− 1

2
z2 − z

)
e−zf ′ +

((
1− 1

2
z2 + 2z

)
e−2z + ze−3z

)
f

=

(
−1− 1

2
z2 − z

)
e−z +

(
z − 1

2
z3 + 2z2

)
e−2z + z2e−3z

has a meromorphic solution f (z) =
1

z2
ee
−z

+ z. Thus, there exist two ques-

tions. Firstly, can we have the same properties as in Theorem A for the linear
differential equation (1.3), when there exists some coefficient As(z) (0 ≤ s ≤ k)

verifying the condition µ(As) <
1

2
? Secondly, how about the growth of mero-

morphic solutions of the linear differential equation

Ak(z)f
(k) +Ak−1(z)f (k−1) + · · ·+A1(z)f ′ +A0(z)f = QeP , (1.4)

when Aj(z) (j = 0, 1, · · · , k), Q(z)(6≡ 0) are entire functions and P is a tran-
scendental entire function? In this paper, we proceed this way and we obtain
the following results.

Theorem 1.1. Suppose that A0(z), · · · , Ak(z), F (z) are entire functions of
finite order. If there exists some s ∈ {0, 1, · · · , k} such that

α = max {σ(Aj), (j 6= s), σ(F )} < µ(As) <
1

2
, (1.5)

then
(i) Every transcendental meromorphic solution f of (1.3) such that λ

(
1
f

)
<

µ(f) satisfies µ(As) ≤ σ2(f) ≤ σ(As). Furthermore, if F 6≡ 0, then we have
µ(As) ≤ λ̄2(f) = λ2(f) = σ2(f) ≤ σ(As).
(ii) If s ≥ 2, then every rational solution f of (1.3) is a polynomial with
deg f ≤ s − 1. If s = 0 or 1, then every nonconstant solution f of (1.3) is
transcendental.
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Remark 1.1. Setting Ak(z) ≡ 1 in Theorem 1.1 we obtain the result of Zhang
and Tu ([16], Theorem 1.8).

Corollary 1.1 Suppose that A0(z), · · · , Ak(z), F (z)(6≡ 0) are entire functions.
If there exists some s ∈ {0, 1, · · · , k} such that

α = max {σ(Aj), (j 6= s), σ(F )} < µ(As) = σ(As) <
1

2
,

then every transcendental meromorphic solution f of (1.3) such that λ
(

1
f

)
<

µ(f) satisfies λ̄2(f) = λ2(f) = σ2(f) = σ(As), and every rational solution f
of (1.3) is a polynomial with deg f ≤ s− 1.

Theorem 1.2. Suppose that A0(z), · · · , Ak(z), Q(z)(6≡ 0) are entire functions
of finite order, P is a transcendental entire function such that

max {σ(P ), σ(Q), σ(Aj), (1 ≤ j ≤ k)} < µ(A0) <
1

2
. (1.6)

Then every solution f of (1.4) is transcendental, and every transcendental

meromorphic solution f of (1.4) such that λ
(

1
f

)
< µ(f) satisfies µ(A0) ≤

λ̄2(f) = λ2(f) = σ2(f) ≤ σ(A0).

Remark 1.2. In Theorems 1.1 and 1.2, we remove the restriction λ
(

1
As

)
<

µ(As).

Corollary 1.2 Suppose that A0(z), · · · , Ak(z), Q(z)(6≡ 0) are entire functions
of finite order, P is a transcendental entire function such that

max {σ(P ), σ(Q), σ(Aj), (1 ≤ j ≤ k)} < µ(A0) = σ(A0) <
1

2
.

Then every solution f of (1.4) is transcendental, and every transcendental

meromorphic solution f of (1.4) such that λ
(

1
f

)
< µ(f) satisfies λ̄2(f) =

λ2(f) = σ2(f) = σ(A0).

Remark 1.3. Obviously, Theorem 1.1 and Theorem 1.2 are generalization of
Theorems A, B of Wang and Liu [14] and Theorem 1.8 of Zhang and Tu [16].

2. PRELIMINARY LEMMAS

Lemma 2.1 [8] Let f be a transcendental meromorphic function in the plane,
and let α > 1 be a given constant. Then there exist a set E1 ⊂ (1,+∞) that
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has a finite logarithmic measure, and a constant B > 0 depending only on α
and (m,n) (m,n ∈ {0, 1, · · · , k}) m < n such that for all z with |z| = r 6∈
[0, 1] ∪ E1, we have∣∣∣∣∣ f (n)(z)

f (m)(z)

∣∣∣∣∣ ≤ B
(
T (αr, f)

r
(logα r) log T (αr, f)

)n−m
.

Lemma 2.2 [6] Let f(z) = g(z)
d(z) be a meromorphic function, where g(z) and

d(z) are entire functions satisfying µ(g) = µ(f) = µ ≤ σ(g) = σ(f) ≤ +∞
and λ(d) = σ(d) = λ( 1

f ) < µ. Then there exists a set E2 ⊂ (1,+∞) of finite

logarithmic measure, such that for all z satisfying |z| = r /∈ [0, 1] ∪ E2 and
|g(z)| = M(r, g) we have ∣∣∣∣ f(z)

f (s)(z)

∣∣∣∣ ≤ r2s, (s ∈ N).

Lemma 2.3 [9] Let g : [0,+∞) → R and h : [0,+∞) → R be monotone
nondecreasing functions such that g(r) ≤ h(r) for all r 6∈ E3 ∪ [0, 1], where
E3 ⊂ (1,+∞) is a set of finite logarithmic measure. Then for any α > 1,
there exists an r0 = r0(α) > 0 such that g(r) ≤ h(αr) for all r > r0.

Lemma 2.4 [6] Let f(z) = g(z)
d(z) be a meromorphic function, where g(z) and

d(z) are entire functions satisfying µ(g) = µ(f) = µ ≤ σ(g) = σ(f) ≤ +∞
and λ(d) = σ(d) = λ( 1

f ) < µ. Then there exists a set E4 ⊂ (1,+∞) of finite

logarithmic measure, such that for all z satisfying |z| = r /∈ [0, 1] ∪ E4 and
|g(z)| = M(r, g), we have

f (n)(z)

f(z)
=

(
νg(r)

z

)n
(1 + o(1)), (n ≥ 1),

where νg(r) denote the central index of g(z).

Lemma 2.5 [5] Let g(z) be an entire function of order σ(g) = α < ∞.
Then for any ε > 0, there exist a set E5 ⊂ [1,+∞) that has a finite linear
measure and finite logarithmic measure, such that for all z satisfying |z| =
r /∈ [0, 1] ∪ E5, we have

exp{−rα+ε} ≤ |g(z)| ≤ exp{rα+ε}.
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Lemma 2.6 [7] Let g(z) be an entire function of infinite order, with the
hyper-order σ2(g) = σ, and νg(r) denote the central index of g(z). Then

lim sup
r→+∞

log log νg(r)

log r
= σ.

Lemma 2.7 [1] Let g(z) be an entire function with 0 ≤ µ(g) < 1. Then for
every α ∈ (µ(g), 1), there exists a set E6 ⊂ [0,∞) such that

log densE6 ≥ 1− µ(g)

α
,

where E6 = {r ∈ [0,∞) : m(r) > M(r) cosπα}, m(r) = inf
|z|=r

log |g(z)| ,

M(r) = sup
|z|=r

log |g(z)| .

Lemma 2.8 Let f(z) be an entire function such that µ(f) < 1
2 . Then for any

given ε > 0, there exists a set E7 ⊂ (1,+∞) with log densE7 > 0, such that
for all z satisfying |z| = r ∈ E7, we have

|f(z)| ≥ exp{rµ(f)−ε}.

Proof. Set α0 =
1
2

+µ(f)

2 . Then, by Lemma 2.7, there exists a set H with

log densH ≥ 1− µ(f)
α0

, such that for all z satisfying |z| = r ∈ H, we have

log |f(z)| ≥ cos(πα0) logM(r, f). (2.1)

By the definition of the lower order, for any given ε > 0, there exists r1 > 0
such that

logM(r, f) ≥ rµ(f)− ε
2 , (2.2)

holds for r > r1. Since

cos(πα0)rµ(f)− ε
2

rµ(f)−ε → +∞, (r → +∞), (2.3)

then, by (2.1) − (2.3), there exists r2(≥ r1), such that for all z satisfying
|z| = r ∈ H \ [0, r2], we have

|f(z)| ≥ exp
{

cos(πα0)rµ(f)− ε
2

}
≥ exp{rµ(f)−ε}.

Setting E7 = H ∩ [r2,+∞], then log densE7 > 0.
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Lemma 2.9 [15] Let f, g be nonconstant meromorphic functions with σ (f)
as order and µ (g) as lower order . Then we have

µ (f + g) ≤ max {σ (f) , µ (g)}

and
µ (fg) ≤ max {σ (f) , µ (g)} .

Furthermore, if µ (g) > σ (f) , then we obtain

µ (f + g) = µ (fg) = µ (g) .

3. PROOF OF THEOREM 1.1

(i) Assume that f is a transcendental meromorphic solution of (1.3) such that

λ
(

1
f

)
< µ(f). From (1.3), we obtain

|As(z)| ≤
∣∣∣∣ ff (s)

∣∣∣∣
[
|Ak(z)|

∣∣∣∣∣f (k)

f

∣∣∣∣∣+ |Ak−1(z)|

∣∣∣∣∣f (k−1)

f

∣∣∣∣∣+ · · ·+ |As+1(z)|

∣∣∣∣∣f (s+1)

f

∣∣∣∣∣
+ |As−1(z)|

∣∣∣∣∣f (s−1)

f

∣∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣f ′f
∣∣∣∣+ |A0(z)|+

∣∣∣∣Ff
∣∣∣∣
]
. (3.1)

By Lemma 2.1, there exists a constant B > 0 and a set E1 ⊂ (1,+∞) of finite
logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1]∪E1, we have∣∣∣∣∣f (j)(z)

f(z)

∣∣∣∣∣ ≤ B (T (2r, f))k+1 , 1 ≤ j ≤ k. (3.2)

Since λ
(

1
f

)
< µ(f), then by Hadamard’s factorization theorem, we can write

f as f(z) = g(z)
d(z) , where g(z) and d(z) are entire functions satisfying

µ(g) = µ(f) = µ ≤ σ(g) = σ(f), σ(d) = λ

(
1

f

)
< µ.

Then by Lemma 2.2, there exists a set E2 of finite logarithmic measure such
that for all |z| = r /∈ [0, 1] ∪ E2 and |g(z)| = M(r, g) and for r sufficiently
large, we have ∣∣∣∣ f(z)

f (s)(z)

∣∣∣∣ ≤ r2s. (3.3)
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By (1.5), for any given ε with 0 < 2ε < µ(As) − α, we have for sufficiently
large r

|Aj(z)| ≤ exp{rα+ε}, (j 6= s), |F (z)| ≤ exp{rα+ε}. (3.4)

By Lemma 2.8, for any given ε > 0, there exists a set E7 ⊂ (1,+∞) with
log densE7 > 0, such that for all z satisfying |z| = r ∈ E7, we have

|As(z)| ≥ exp{rµ(As)−ε}. (3.5)

Since σ(d) = λ
(

1
f

)
< µ(f) = µ(g), then for any ε with 0 < 2ε < µ(f)−λ

(
1
f

)
and for sufficiently large r we have∣∣∣∣F (z)

f (z)

∣∣∣∣ =

∣∣∣∣d(z)

g(z)

∣∣∣∣ |F (z)| =
∣∣∣∣ d(z)

M(r, g)

∣∣∣∣ |F (z)|

≤ exp{rλ
(

1
f

)
+ε}

exp{rµ(f)−ε}
exp{rα+ε} ≤ exp{rα+ε}. (3.6)

Let E8 = E7�([0, 1] ∪ E1 ∪ E2), then we have log densE8 > 0. Then, by
substituting (3.2) − (3.6) into (3.1), for all z satisfying |z| = r ∈ E8 and
|g(z)| = M(r, g), we obtain

exp{rµ(As)−ε} ≤ B(k + 1)r2s(T (2r, f))k+1 exp{rα+ε}. (3.7)

By (3.7) and Lemma 2.3, we get µ(As) − ε ≤ σ2(f). Since ε > 0 is arbitrary,
we have µ(As) ≤ σ2(f). Now, we prove that σ2(f) ≤ σ(As). We can write
(1.3) as

−Ak(z)
f (k)

f
= Ak−1(z)

f (k−1)

f
+ · · ·+As+1(z)

f (s+1)

f

+As(z)
f (s)

f
+As−1(z)

f (s−1)

f
+ · · ·+A1(z)

f ′

f
+A0(z)− F (z)

f(z)
. (3.8)

By Lemma 2.4, there exists a set E4 ⊂ (1,+∞) of finite logarithmic measure
such that for all |z| = r /∈ [0, 1] ∪ E4 and |g(z)| = M(r, g), we have

f (j)(z)

f(z)
=

(
νg(r)

z

)j
(1 + o(1)), (j = 1, · · · , k) . (3.9)

For any given ε > 0, for sufficiently large r we have

|Aj(z)| ≤ exp{rσ(As)+ε}, j = 0, · · · , k − 1. (3.10)
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By Lemma 2.5, for any given ε > 0, there exists a set E5 ⊂ (1,+∞) of finite
logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1]∪E5, we have

|Ak(z)| ≥ exp{−rσ(Ak)+ε} ≥ exp{−rσ(As)+ε}. (3.11)

From (3.8) and (3.9), we have

−
(
νg(r)

z

)k
(1 + o(1)) =

1

Ak(z)

k−1∑
j=1

Aj(z)

(
νg(r)

z

)j
(1 + o(1))

+A0(z)− F (z)

f(z)

]
,

it follows∣∣∣∣∣
(
νg(r)

z

)k∣∣∣∣∣ |1 + o(1)| ≤ 1

|Ak(z)|

k−1∑
j=1

|Aj(z)|

∣∣∣∣∣
(
νg(r)

z

)j∣∣∣∣∣ |1 + o(1)|

+ |A0(z)|+
∣∣∣∣F (z)

f(z)

∣∣∣∣] . (3.12)

By (3.6) and (3.10) − (3.12) for all z satisfying |z| = r /∈ [0, 1] ∪ E4 ∪ E5 and
|g(z)| = M(r, g), we have(

νg(r)

r

)
|1 + o(1)| ≤ (k + 1) |1 + o(1)| exp{rσ(As)+ε},

so,

lim sup
r→+∞

log log νg(r)

log r
≤ σ(As) + ε. (3.13)

Since ε > 0 is arbitrary, then by (3.13), Lemma 2.3 and Lemma 2.6, we have
σ2(g) ≤ σ(As), that is σ2(f) ≤ σ(As). Therefore, we get

µ(As) ≤ σ2(f) ≤ σ(As).

Let F 6≡ 0. Now, we prove λ̄2(f) = λ2(f) = σ2(f). By (1.3), we have

1

f
=

1

F

(
Ak

f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+A1

f ′

f
+A0

)
. (3.14)
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If f has a zero at z0 of order γ > k, then F has a zero at z0 of order γ − k.
Hence we have

n(r,
1

f
) ≤ kn(r,

1

f
) + n(r,

1

F
),

N(r,
1

f
) ≤ kN(r,

1

f
) +N(r,

1

F
). (3.15)

By (3.14), we have by the lemma of logarithmic derivative [10]

m(r,
1

f
) ≤ m(r,

1

F
) +

k∑
j=0

m(r,Aj) +O(log rT (r, f)), (r /∈ E), (3.16)

where E is a set of a finite linear measure. By (3.15) and (3.16), we get

T (r, f) ≤ kN(r,
1

f
)+T (r, F )+

k∑
j=0

T (r,Aj)+O(log rT (r, f)), (r /∈ E). (3.17)

For sufficiently large r and any given ε > 0, we have

O(log rT (r, f)) = o (T (r, f)) , (3.18)

T (r, F ) +

k∑
j=0

T (r,Aj) ≤ (k + 2) rσ(As)+ε. (3.19)

Hence, from (3.17), (3.18) and (3.19) , for sufficiently large r /∈ E, we get that

(1− o(1))T (r, f) ≤ kN(r,
1

f
) + (k + 2) rσ(As)+ε,

so σ2(f) ≤ λ̄2(f). Since λ̄2(f) ≤ σ2(f), we get

µ(As) ≤ λ̄2(f) = λ2(f) = σ2(f) ≤ σ(As).

(ii) Assume that f is a rational solution of (1.3). If either f is a rational
function, which has a pole at z0 of degree m ≥ 1, or f is a polynomial with
deg f ≥ s, then f (s)(z) 6≡ 0. From (1.3), we obtain

|As(z)| ≤

[
|Ak(z)|

∣∣∣∣∣f (k)

f (s)

∣∣∣∣∣+ |Ak−1(z)|

∣∣∣∣∣f (k−1)

f (s)

∣∣∣∣∣+ · · ·+ |As+1(z)|

∣∣∣∣∣f (s+1)

f (s)

∣∣∣∣∣
+ |As−1(z)|

∣∣∣∣∣f (s−1)

f (s)

∣∣∣∣∣+ · · ·+ |A1(z)|
∣∣∣∣ f ′f (s)

∣∣∣∣+ |A0(z)|+
∣∣∣∣ 1

f (s)

∣∣∣∣ |F |
]
. (3.20)
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Then, by substituting (3.4) and (3.5) into (3.20), we obtain

exp{rµ(As)−ε} ≤ (k + 1)rM exp{rα+ε},

where M is a constant. This is a contradiction. Therefore, f must be a
polynomial with deg f ≤ s− 1.

If s = 0 or 1 and f is a polynomial solution of (1.3), then we get that deg f ≤
s−1. Thus, f must be a constant. Therefore, every nonconstant solution f(z)
of (1.3) is transcendental.

4. PROOF OF THEOREM 1.2

By hypothesis, it is known that every meromorphic solution of (1.4) is of
infinite order. Then, every meromorphic solution of (1.4) is transcendental.

Assume that f is a transcendental meromorphic solution, such that λ
(

1
f

)
<

µ(f). Set f = geP . Then, we get that

λ̄2(g) = λ̄2(f), λ2(g) = λ2(f). (4.1)

By substituting f = geP into (1.4), we have

g(k) +Bk−1(z)g(k−1) + · · ·+B1(z)g′ +B0(z)g =
Q

Ak(z)
, (4.2)

where

Bk−1 =
Ak−1

Ak
+ kP ′, (4.3)

Bk−j =
Ak−j
Ak

+ (k − j + 1)
Ak−j+1

Ak
P ′

+

j∑
m=2

Ak−j+m
Ak

[(
k − j +m

m

)
(P ′)m +Dm−1(P ′)

]
, j = 2, ..., k (4.4)

and Dm−1(P ′) is a differential polynomial in P ′ of degree m−1, its coefficients
are constants. By (4.4) , we get

B0 =
A0

Ak
+
A1

Ak
P ′ +

k∑
m=2

Am
Ak

[
(P ′)m +Dm−1(P ′)

]

=
1

Ak

[
A0 +A1P

′ +
k∑

m=2

Am
[
(P ′)m +Dm−1(P ′)

]]
. (4.5)
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Using (1.6) , (4.3) , (4.4) , (4.5) and Lemma 2.9, we obtain

µ(B0) = max {µ(A0), σ(Aj) (1 ≤ j ≤ k)} = µ(A0) (4.6)

and

σ

(
Q

Ak

)
≤ max {σ(Ak), σ(Q)} < µ(A0), σ(Bj) < µ(A0), j = 1, · · · , k − 1.

(4.7)
By (4.2) , (4.6) , (4.7) and applying Theorem 1.1 for Ak(z) ≡ 1 and s = 0, we
get

µ(A0) ≤ λ̄2(g) = λ2(g) = σ2(g) ≤ σ(A0). (4.8)

Since σ2(eP ) = σ(P ) < µ(A0) ≤ σ2(g), then we obtain σ2(f) = σ2(g). Hence,
by (4.1) and (4.8) , we have

µ(A0) ≤ λ̄2(f) = λ2(f) = σ2(f) ≤ σ(A0).
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Abstract The work is devoted to the study of a nonlinear parabolic equation with princi-
pal part in divergence form, endowed with non-homogeneous Cauchy-Neumann
boundary conditions and non-constant thermal conductivity. The existence,
uniqueness and regularity of solutions is established. Here we extend the re-
sults already proven by one of the authors for a nonlinearity of cubic type,
making the present mathematical model to be more capable for description the
complexity of certain wide classes of real physical phenomena (phase change,
for instance).

Keywords: Qualitative properties of solutions, boundary value problems for nonlinear

parabolic PDE, reaction-diffusion equations, Leray-Schauder principle, thermodynamics,

heat transfer, phase-field models.
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1. INTRODUCTION

On a bounded domain Ω ⊂ IRn, n ∈ {1, 2, 3}, with a C2 boundary ∂Ω
not
= Γ,

and for a finite time T > 0, we consider the following second boundary value
problem

p1

∂

∂t
u− d

dxi
(k(u(t, x))∇u) = p2(u− u3) + f(t, x) in Q = (0, T ]× Ω

k(u(t, x))
∂

∂n
u+ p3u = w(t, x) on Σ = (0, T ]× ∂Ω

u(0, x) = u0(x) on Ω,
(1.1)

where:
• u(t, x) is the unknown function and

∇u =

(
∂

∂x1
u,

∂

∂x2
u, · · · , ∂

∂xn
u

)
not
=
(
ux1

, ux2
, · · · , uxn

) not
= ux;

129
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• p1 , p2 , p3 are positive values;
• k(u(t, x)) - is the degenerate mobility [attached to the solution u(t, x) of
(1.1)], assumed to satisfy (see [5] and [27] for a detailed discussion of it):

0 < kmin ≤ k(u(t, x)) ≤ kmax, ∀(t, x) ∈ Q; (1.2)

• f(t, x) ∈ Lp(Q) is a given function, where p satisfies
p ≥ 2; (1.3)

• w(t, x) ∈ W
1− 1

2p
,2− 1

p
p (Σ) is a given function depending on two variables,

which also can be interpreted as boundary control,

• u0(x) ∈W
2− 2

p
∞ (Ω) verifying k(u0(x))

∂

∂n
u0(x) + p3u0(x) = w(0, x).

• n=n(x) is a vector of the outward (from Ω) unit normal to the surface Σ;
∂
∂n denotes differentiation along n.

Concerning equation (1.1)1, we recall for reader’s convenience that this is a
quasi-linear one with principal part in divergence form of type (2.3) in [14, p.
11], with

ai(t, x, u, ux) = k(u(t, x))uxi , i = 1, ..., n
and

a(t, x, u, ux) = −p2(u− u3)− f(t, x),
while the boundary conditions (1.1)2 are of second type (7.2) in [14, p. 475],
with

ai(t, x, u)uxicos(n, xi) = k(u(t, x)) ∂
∂nu(t, x), i = 1, ..., n

and
ψ(t, x, u)|Σ = p3u(t, x)− w(t, x).

If we write equation (1.1)1 in the equivalent form (see [14, p.3])

p1

∂

∂t
u− ∂

∂uxj
(k(u)uxi)uxixj = A(t, x, u, uxi)+p2(u−u3)+f(t, x) in Q, (1.4)

with uxixj = ∂2

∂xi∂xj
u and A(t, x, u, uxi) = ∂

∂u (k(u)uxi)uxi+
∂
∂xi

(k(u)uxi), then

it is easy to recognize (1.4) as being a quasi-linear one of type (2.4) in [14, p.
11], with

aij(t, x, u, ux) = ∂
∂uxj

ai(t, x, u, ux) = ∂
∂uxj

k(u(t, x))uxi , i = 1, ..., n

and
a(t, x, u, ux) = −A(t, x, u, ux)− p2(u− u3)− f(t, x).

In addition, unless otherwise stated, we assume that equations (1.1)1 and (1.4)
are uniformly parabolic, which means fulfilment of the conditions

ν(|u|)ξ2 ≤ ∂ai(t, x, u, p)

∂pj
ξiξj ≤ µ(|u|)ξ2 (1.5)
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ν(|u|)ξ2 ≤ aij(t, x, u, p)ξiξj ≤ µ(|u|)ξ2 (1.6)

for arbitrary u and p and ξ = (ξ1, · · · , ξn) an arbitrary real vector, where
ν(r) and µ(r) are positive (nonincreasing and nondecreasing, respectively)
continuous functions of r ≥ 0.

Definition 1.1. u(t, x) is a classical solution of the second boundary value
problem (1.1) if it is continuous in Q̄, has continuous derivatives ut, ux, uxx in
Q, satisfies the equation (1.1)1 at all points (t, x) ∈ Q and satisfies conditions
(1.1)2 and (1.1)3 for (t, x) ∈ Σ and t = 0, respectively.

In the present work we will investigate the solvability of the second bound-
ary value problems of the form (1.1) in the class W 1,2

p (Q). One proves the
existence, the regularity and the uniqueness of solutions (Theorem 2.1 below)
for the nonlinear parabolic problem (1.1) in the new mathematical formula-
tion in which the principal part is in divergence form and considering the cubic
nonlinearity p2(u − u3) which verifies for n ∈ {1, 2, 3} the assumption H0 in
[23], that is:

H0 : (u− u3)|u|3p−4u ≤ 1 + |u|3p−1 − |u|3p.
In the following we will denote by C several positive constants, with the

remark that the extra dependencies will be set out on occurrence. In addition,
every product is understood in the L2-space, except when otherwise specified.
In particular, the norm and the scalar product in L2(Ω) are denoted by ‖ · ‖
and < ., . >, respectively.

2. WELL-POSEDNESS OF SOLUTIONS TO THE
NONLINEAR EQUATION (1.1)

The main result of this Section establishes the dependence of the solu-
tion u(t, x) in the nonlinear parabolic equation (1.1) on the terms f(t, x) and
w(t, x).

Basic tools in our approach are the Leray-Schauder degree theory [11], the
Lp-theory of linear and quasi-linear parabolic equations [14], as well as the
Lions and Peetre embedding Theorem [16, p. 24] to ensure the existence of a

continuous embedding W 1,2
p (Q) ⊂ Lµ(Q), where the number µ is defined as

follows

µ =

 any positive number ≥ 3p if 1
p −

2
n+2 ≤ 0,(

1
p −

2
n+2

)−1
if 1
p −

2
n+2 > 0,

(2.1)

and, for a given positive integer k and 1 ≤ p ≤ ∞, W k,2k
p (Q) denote the

Sobolev space on Q:

W k,2k
p (Q) =

{
y ∈ Lp(Q) :

∂r

∂tr
∂q

∂xq
y ∈ Lp(Q), for 2r + q ≤ k

}
,
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i.e., the spaces of functions whose t-derivatives and x-derivatives up to the
order k and 2k, respectively, belong to Lp(Q) (see [14, p. 5]).

Also, we shall use the set C1,2(Q̄) (C1,2(Q)) of all continuous functions in
Q̄ (in Q) having continuous derivatives ut, ux, uxx in Q̄ (in Q), as well as

the Sobolev spaces W l
p(Ω), W

l,l/2
p (Σ) with non integral l for the initial and

boundary conditions, respectively (see [14, p. 8, p. 70 and p. 81]).

Our main result in studying the existence, estimate, uniqueness and regu-
larity of solution in problem (1.1) is the following.

Theorem 2.1 There exists a solution u ∈ W 1,2
p (Q) to problem (1.1) which

satisfies

‖u‖
W 1,2
p (Q)

≤ C
[
1 + ‖u0‖

W
2− 2

p
∞ (Ω)

+ ‖u0‖
3p−2
p

L3p−2(Ω)
+ ‖f‖Lp(Q) (2.2)

+‖w‖
W

1− 1
2p ,2−

1
p

p (Σ)
+ ‖w‖

3p−2
p

L3p−2(Σt)

]
,

where the constant C depends on |Ω|, T , n, p, p1, p2 and p3 but is independent
of u, f and w.

If u1, u2 ∈W 1,2
p (Q) are two solutions to (1.1), corresponding to {f1, w1, u1

0}
and {f2, w2, u2

0}, respectively, such that

‖u1‖
W 1,2
p (Q)

≤M, ‖u2‖
W 1,2
p (Q)

≤M for some M ∈ (0,∞), (2.3)

and
k(u1(t, x)) = k(u2(t, x)) for (t, x) ∈ Σ, (2.3′)

then the following estimate holds

max
(t,x)∈Q

|u1−u2| ≤ C1e
CTmax

{
max

(t,x)∈Q
|f1 − f2|, max

(t,x)∈Σ
|w1 − w2|, max

(t,x)∈Ω
|u1

0 − u2
0|
}
,

(2.4)
where the constants C1 and C are independent of {u1, f1, w1, u1

0} and {u2, f2, w2, u2
0}.

In particular, the uniqueness of solution to problem (1.1) holds.

Proof. In order to use the Leray-Schauder degree theory we will choose as
suitable Banach space

B = W 0,1
p (Q) ∩ L3p(Q),

endowed with the norm

‖u‖B = ‖u‖Lp(Q) + ‖ux‖Lp(Q),
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and let us define the nonlinear operator T : B × [0, 1]→ B as

u = u(v, λ) = T (v, λ) ∀v ∈ B, ∀ λ ∈ [0, 1], (2.5)

where u is the unique solution to the following linear second boundary value
problem

p1

∂

∂t
u−

[
λ

∂

∂vxj
(k(v)vxi) + (1− λ)δji

]
uxixj

= λ
[
A(t, x, v, vxi) + p2(v − v3) + f(t, x)

]
in Q

k(v)
∂

∂n
u+ p3u = λw(t, x) on Σ

u(0, x) = λu0(x) on Ω.

(2.6)

As regards the nonlinear operator T defined by (2.5), we have to check the
properties i-ii listed below, i.e.:

i. T is well-defined (the problem (2.6) has a unique solution). From the

right hand of (2.6)1, it follows that, ∀v ∈W 0,1
p (Q) ∩ L3p(Q), then v3 ∈ Lp(Q)

and thus A(t, x, v, vxi) + p2(v − v3) + f(t, x) ∈ Lp(Q). Using now Lp-theory
of linear parabolic equations (see [14, p. 341-342]), the solution u to problem
(2.6) exists and is unique with

u = u(v, λ) ∈W 1,2
p (Q) ∀ v ∈W 0,1

p (Q) ∩ L3p(Q), ∀ λ ∈ [0, 1]. (2.7)

Thanks to the continuous inclusions (see [16, p. 24])

W 1,2
p (Q) ⊂W 0,1

p (Q) ∩ L3p(Q), (2.8)

we derive that T (v, λ) = u ∈ W 0,1
p (Q) ∩ L3p(Q) for all v ∈ W 0,1

p (Q) ∩ L3p(Q)
and ∀ l ∈ [0, 1] which means that T is well defined.

ii. T is continuous and compact. Let vn → v in W 0,1
p (Q) ∩ L3p(Q) and

λn → λ in [0, 1]. Denote un,λn = T (vn, λn), un,λ = T (vn, λ) and u1,λ = T (v, λ).
Relations (2.5) and (2.6) give

p1

∂

∂t
Un,λn,λ −

[
λ

∂

∂vnxj
(k(vn)vnxi) + (1− λ)δji

]
Un,λn,λ
xixj

= (λn − λ)

{[
∂

∂vnxj
(k(vn)vnxi)− δ

j
i

]
un,λnxixj

+A(t, x, vn, vnxi) + p2(vn − (vn)3) + f(t, x)
}

in Q

k(vn)
∂

∂n
Un,λn,λ + p3U

n,λn,λ = (λn − λ)w(t, x) on Σ

u(0, x) = (λn − λ)u0(x) on Ω,

(2.9)
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where Un,λn,λ = un,λn − un,λ.

The right-hand side of (2.9)1 belongs to Lp(Q) and thus we may apply the
Lp-theory (see [14, p. 341-342]) to problem (2.9), which gives the estimate

‖Un,λn,λ‖
W 1,2
p (Q)

≤ C|λn−λ|

‖u0‖
W

2− 2
p

∞ (Ω)
+

∥∥∥∥∥
(

∂

∂vnxj
(k(vn)vnxi)− δ

j
i

)
un,λnxixj

∥∥∥∥∥
Lp(Q)

+‖(vn − (vn)3)‖Lp(Q) +
∥∥A(t, x, vn, vnxi)

∥∥
Lp(Q)

+ ‖f‖Lp(Q) + ‖w‖
W

2− 1
p ,1−

1
2p

p (Σ)

]
.

Having vn bounded in W 0,1
p (Q)∩L3p(Q), we can derive that (vn)3 is bounded

in Lp(Q) (see, e.g., [11] or [14, p. 42]). Moreover, by virtue of the working
hypothesis, we can easily deduce that the remaining terms on the right-hand
side from the above inequality are also bounded. Thus, making use of the
convergence λn → λ, from the above inequality we get

‖un,λn − un,λ‖
W 1,2
p (Q)

→ 0 as n→∞. (2.10)

From (2.5) and (2.6) we also obtain

p1

∂

∂t
Un,1,λ −

[
λ

∂

∂vnxj
(k(vn)vnxi) + (1− λ)δji

]
Un,1,λ
xixj

= λ

{[
∂

∂vnxj
(k(vn)vnxi)−

∂
∂vxj

(k(v)vxi)

]
uλxixj

+
[
A(t, x, vn, vnxi)−A(t, x, v, vxi)

]
+p2

[
(vn − v)− ((vn)3 − v3)

]}
in Q

k(vn)
∂

∂ν
Un,1,λ + p3U

n,1,λ = 0 on Σ

u(0, x) = 0 on Ω,

(2.11)

where Un,1,λ = un,λ − u1,λ.

The Lp-theory applied to (2.11) (see [14, p. 341-342]), give us the estimate

‖un,λ − u1,λ‖
W 1,2
p (Q)

≤ Cλ


∥∥∥∥∥
[

∂

∂vnxj
(k(vn)vnxi)−

∂

∂vxj
(k(v)vxi)

]
uλxixj

∥∥∥∥∥
Lp(Q)

+‖A(t, x, vn, vnxi)−A(t, x, v, vxi)‖Lp(Q) + ‖(vn − v)− ((vn)3 − v3)‖Lp(Q)

}
,

for a positive constant C. Then, the convergence vn → v in W 0,1
p (Q)∩L3p(Q)

and the continuity of the Nemytskij operator (see, e.g., [11]), as well as the
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continuity of ∂
∂vnxj

(k(vn)vnxi) and A(t, x, vn, vnxi), allow us to conclude that

‖un,λ − u1,λ‖
W 1,2
p (Q)

→ 0 as n→∞. (2.12)

Making use of the continuous embedding (2.8) and relations (2.10), (2.12),
we derive the continuity of the nonlinear operator T defined in (2.5). Fur-
thermore, T is compact. Indeed, since µ > 3p (see (2.1)), the inclusion

W 1,2
p (Q) ↪→W 0,1

p (Q)∩L3p(Q) is compact (see [16, p. 21]). Moreover, writing
T as the composition

B × [0, 1]→W 1,2
p (Q) ↪→W 0,1

p (Q) ∩ L3p(Q) = B,

the compactness of T immediately follows.

2.1. THE REGULARITY OF THE SOLUTION

We will establish now the existence of a number δ > 0 such that (see (2.5))

(u, λ) ∈ B × [0, 1] with u = T (u, λ) =⇒ ‖u‖B < δ. (2.13)

Let u ∈W 0,1
p (Q) ∩ L3p(Q) solving the problem (see (2.6))

p1

∂

∂t
u− λ d

dxi
(k(u)∇u) + (1− λ)∆u = λ

[
p2(u− u3) + f(t, x)

]
in Q

k(u)
∂

∂ν
u+ p3u = λw(t, x) on Σ

u(0, x) = λu0(x) on Ω.
(2.14)

Multiplying the first equation in (2.14) by |u|3p−4u, integrating over Qt :=
(0, t)× Ω, t ∈ (0, T ] and using Green’s Theorem, we get

p1

3p− 2

∫
Ω

|u(t, x)|3p−2dx+3(p−1)(1−λ)

∫
Qt

|∇u|2|u|3p−4 dτdx+p3

∫
Σt

|u|3p−2 dτdγ

(2.15)

≤ l p1

3p− 2

∫
Ω

|u0(x)|3p−2 dx+ λp2

∫
Qt

(u− u3)|u|3p−4u dτdx

+λ

∫
Qt

f |u|3p−4u dτdx+ λ
kmin + 1

kmin

∫
Σt

w|u|3p−4u dτdγ for all t ∈ (0, T ].
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The Hölder’s and Cauchy’s inequalities, applied to the last term in (2.15), give
us

λ
kmin + 1

kmin

∫
Σt

w|u|3p−4u dτdγ (2.16)

≤ p3

3p− 3

3p− 2

∫
Σt

|u|3p−2 dτdγ + λ
kmin + 1

kmin

1

p3

1

3p− 2

∫
Σt

|w|3p−2 dτdγ.

By H0, relations (1.3), (2.16) and Young’s inequality, from (2.15) we obtain

p1

3p− 2

∫
Ω

|u(t, x)|3p−2dx+ 3(p− 1)(1− λ)

∫
Qt

|∇u|2|u|3p−4 dτdx (2.17)

+λp2

∫
Qt

|u|3p dτdx+
p3

3p− 2

∫
Σt

|u|3p−2 dτdγ

≤ λ p1

3p− 2

∫
Ω

|u0(x)|3p−2 dx+ λ

(
|Ω|T +

1

3p
ε−3p|Ω|T +

1

p
ε−p‖f‖pLp(Q)

)

+λ

{
3p− 1

3p
ε

3p
3p−1 +

p− 1

p
ε

p
p−1

}∫
Qt

|u|3p dsdx+λ
kmin + 1

kmin

1

p3

1

3p− 2

∫
Σt

|w|3p−2 dτdγ.

Taking ε small enough, inequality (2.17) yields

λ‖|u|3‖pLp(Q) ≤ C1

(
1 + ‖u0‖3p−2

L3p−2(Ω)
+ ‖f‖pLp(Q) + ‖w‖3p−2

L3p−2(Σt)

)
, (2.18)

for a constant C1 = C(|Ω|, T, n, p, kmin, p1 , p2 , p3) > 0.
Applying Lp-theory to problem (2.14) (see [14, p. 341-342]), we get

‖u‖
W 1,2
p (Q)

≤ C2

(
‖u0‖

W
2− 2

p
∞ (Ω)

+ p2‖(u− u3)‖Lp(Q) + ‖f‖Lp(Q) + ‖w‖
W

1− 1
2p ,2−

1
p

p (Σ)

)
,

(2.19)
for a constant C2 = C(|Ω|, T, n, p, p1 , p2 , p3) > 0.

Taking into account Lemma 1.1 in [23] and relation (2.18), we deduce that

‖u− u3‖Lp(Q) ≤ C1

(
1 + ‖u0‖

3p−2
p

L3p−2(Ω)
+ ‖f‖Lp(Q) + ‖w‖

3p−2
p

L3p−2(Σ)

)
and then (2.19) becomes

‖u‖
W 1,2
p (Q)

≤ C2

(
1 + ‖u0‖

W
2− 2

p
∞ (Ω)

+ ‖u0‖
3p−2
p

L3p−2(Ω)
(2.20)
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+‖f‖Lp(Q) + ‖w‖
W

1− 1
2p ,2−

1
p

p (Σ)
+ ‖w‖

3p−2
p

L3p−2(Σt)

)
.

The continuous embedding in (2.8) ensures that

‖u‖B ≤ C‖u‖W 1,2
p (Q)

which, owing to (2.20), ensures that a constant δ > 0 can be found such that
the property expressed in (2.13) is true.

Denoting

Bδ :=
{
u ∈ B : ‖u‖B < δ

}
,

relation (2.13) implies that

T (u, λ) 6= u ∀u ∈ ∂Bδ, ∀λ ∈ [0, 1],

provided that δ > 0 is sufficiently large. Furthermore, following the same
reasoning as in paper [6], we conclude that problem (1.1) has a solution u ∈
W 1,2
p (Q) (see also [23, p. 195]). Estimate (2.2) follows directly from relation

(2.20) and this completes the proof of the first part.

2.2. THE UNIQUENESS OF THE SOLUTION

Now, let us prove the second part of Theorem 2.1. Precisely, we will estab-
lish the estimate (2.4) and, as a consequence, the uniqueness of the solution
to problem (1.1) or (1.4)-(1.1)2,3.

By hypothesis, u1, u2 ∈ W 1,2
p (Q) solve problem (1.1) corresponding to f1,

w1, u1
0 and f2, w2, u2

0, respectively. Thus u1 − u2 ∈W 1,2
p (Q).

For convenience, we denote in what follow:

uλ(t, x) = λu1(t, x)+(1−λ)u2(t, x), uλx(t, x) = λu1
x(t, x)+(1−λ)u2

x(t, x)

and

aij(t, x, u
1, u1

x) = ∂
∂u1

xj

k(u1)u1
xi , aij(t, x, u

2, u2
x) = ∂

∂u2
xj

k(u1)u2
xi .

Also, following (5.3) in [14, p. 445], we write the increments of the aij and A
in the form

aij(t, x, u
1, u1

x)− aij(t, x, u2, u2
x) =

1∫
0

d

dλ
ai,j

(
t, x, uλ, uλx

)
dλ,

A(t, x, u1, u1
x)−A(t, x, u2, u2

x) =

1∫
0

d

dλ
A
(
t, x, uλ, uλx

)
dλ,
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and then

aij(t, x, u
1, u1

x)u1
xixj
− aij(t, x, u2, u2

x)u2
xixj

= aij(t, x, u
1, u1

x)Uxixj (2.22)

+u2
xixj

Uxi 1∫
0

∂

∂uλxj
ai,j

(
t, x, uλ, uλx

)
dλ+ U

1∫
0

∂

∂uλ
ai,j

(
t, x, uλ, uλx

)
dλ

 ,
A(t, x, u1, u1

x)−A(t, x, u2, u2
x) (2.23)

= Uxi

1∫
0

∂

∂uλxj
A
(
t, x, uλ, uλx

)
dλ+ U

1∫
0

∂

∂uλ
A
(
t, x, uλ, uλx

)
dλ,

where U(t, x) = u1(t, x)− u2(t, x).
We subtract the equations (1.4)-(1.1)2,3 for u2(t, x) from the equations (1.4)-

(1.1)2,3 for u1(t, x) and, owing to (2.3’), we obtain the linear equation
p1

∂

∂t
U − âij(t, x)Uxixj + âi(t, x)Uxi + â(t, x)U = f1 − f2 in Q

k(u1)
∂

∂n
U + p3U = w1 − w2 on Σ

U(0, x) = u1
0(x)− u2

0(x) on Ω,
(2.24)

where

âij(t, x) = aij(t, x, u
1, u1

x),

âi(t, x) = −u2
xixj

1∫
0

∂

∂uλxj
ai,j

(
t, x, uλ, uλx

)
dλ+

1∫
0

∂

∂uλxj
A
(
t, x, uλ, uλx

)
dλ,

â(t, x) = −u2
xixj

1∫
0

∂

∂uλ
ai,j

(
t, x, uλ, uλx

)
dλ+

1∫
0

∂

∂uλ
A
(
t, x, uλ, uλx

)
dλ

−p2

[
1−

(
(u1)2 + u1u2 + (u2)2

)]
.

By virtue of the relations (1.2), (1.6) and (2.3), the conditions of Theorem
2.3 in [14, p. 16] on linear equations are fulfilled. In view of this, it follows
from (2.24) that estimate of type (2.4) is valid for U , which finishes the proof
of Theorem 2.1.

As a consequence, the uniqueness of solution to problem (1.1) is valid.

Corollary 2.1. For the same initial conditions, the problem (1.1) possesses a
unique classical solution.
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Proof. Let f1 = f2 = f and w1 = w2 = w in the Theorem 2.1. Then (2.4)
shows that the conclusion of the corollary is true (see Definition 1.1 and [14,
Theorem 2.4, p. 17]).

3. CONCLUSIONS

The problem addressed in this paper is a nonlinear reaction-diffusion equa-
tion with principal part in divergence form, endowed with non-homogeneous
Cauchy-Neumann and degenerate mobility. Thus, by the presence of operator
div in the diffusion term, the present paper extends the type of nonlinearities
already studied (see [6], [8], [9], [17], [18], [20], [22], [23]).

Provided that the initial and boundary data meet appropriate regularity and
compatibility conditions, we prove the existence, uniqueness and regularity
of solutions. Precisely, the Leray-Schauder principle is applied to prove the
existence result for the nonlinear problem in question, while the Lp theory
of linear and quasi-linear parabolic equations is involved in order to derive
regularity properties for the solutions. Moreover, the a priori estimates are
made in Lp(Q) which leads to a better estimates for unknown functions u(t, x).
This approach could be applied in future to study other kind of the first and
second boundary value problems. For another technique regarding this topic,
we can suggest for the readers the monographs [3] and [4].

The mathematical model (1.1) is linked, and not only, to the Allen-Cahn
equation (see [1], [2]) and the Cahn-Hilliard equation (see and [7, Figure 1, p.
421]) which models, among other, the time evolution of the order parameter in
the non-isothermal case and the phase-separation phenomenon, respectively.
Recently, the Allen-Cahn equation has been widely applied to many complex
moving interface problems, like: the mixture of two incompressible fluids, the
nucleation of solids, vesicle membranes, etc. Also, the nonlinear parabolic
equation (1.1)1 occurs in the Caginalp’s phase-field transition system (see [7])
describing the transition between the solid and liquid phases in the solidifi-
cation process of a material occupying a region Ω. Regarding the latter very
complex physical process, we wish to emphasize that our assumption in (1.2) is
sustained by industrial applications (see [12], for example). In [26] the reader
can find more details relative to a more extensive class of problems on the type
those treated in this paper (reaction-diffusion equation), as well as different
types of the nonlinear term.

Numerical analysis as well as various simulations regarding the physical
phenomena described by the nonlinear parabolic problem (1.1) (in particular,
the separating region), represent a matter for further investigation (see [10],
[12], [13], [15], [19]-[21], [24], [25] and [28], for example). In addition, the
qualitative results obtained here can be involved in the study of distributed
and/or boundary nonlinear optimal control problems governed by the nonlin-
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ear problem (1.1). Amongst other things, we wish to exploit all this in our
future works.
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Abstract Let X be a Banach space and E be a Banach lattice.An operator T : X → E
is called a semi-compact operator if every ε > 0 there is an 0 ≤ x in E such
that T (ball(X)) ⊆ [−x, x] + ε(ball(E)). In this study, we investigate semi-
compactness and b-semicompactness of an operator and its adjoint.
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1. INTRODUCTION

Let X be a Banach space and E be a Banach space. We denote E′ by
the set of all order bounded linear functionals onE, and E′′ by the set of all
second order dual of E. By X ′ we denote the set of all continuous linear
functionals on X. Since E is a Banach lattice, order dual and continuous dual
are coincide, [1, 5].Let A be a subset of E. A is called a b-order bounded if A
is an order bounded in the second order dual E′′ of E. A Banach lattice is said
to have b-property if every b-order bounded set is an order bounded set in E,
[2,3].A Banach lattice E is called a KB-space if every positive increasing norm
bounded sequence in E converges. A Banach lattice E is a KB space if and
only if it has an order continuous norm and with property (b),[2].There are a
lot of KB spaces in Banach lattices, [1, 5].A Banach lattice E is said to have
an order continuous norm if xn ↓ 0 in E implies ‖ xn ‖→ 0 as n → ∞. For
example, c0 has an order continuous norm. Let E be a Banach lattice. E′ is a
KB space if and only if E has an order continuous norm.A continuous linear
operator T : X → E is called a b-semicompact if for each ε > 0 there exists
some 0 ≤ u ∈ E′′ such that T (ball(X) ⊆ [−u, u]+ εball(E

′′
), [4]. A continuous

linear operator T : X → E is called a semicompact if for each ε > 0 there exists
some 0 ≤ u ∈ E such that T (ball(X) ⊆ [−u, u] + εball(E),[7],[6] A continuous
linear operator T : E → X is called b-order weakly compact if image of a
b-order bounded set under T is relatively weakly compact set. Every weakly
compact operator is b-weakly compact and every b-weakly compact operator
is order weakly compact.In some special cases, converses of this known results
are true.

In this paper, we study the link between semicompact operators,
b-semicompact operators, order weakly compact operators and their adjoints.
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In addition , we investigate the relation between b-semicompact operator and
ring ideals generated by positive operators.

2. ON THE LINK BETWEEN B-SEMICOMPACT
OPERATORS AND OTHER TYPE
OPERATORS

Definition 2.1. ([1,5])Let X be a Banach space and E be a Banach lattice.
A continuous linear operator T : X → E is called an L-weakly compact if
T (ball(X)) is an L-weakly compact set. A subset A of E is called L-weakly
compact if ‖ xn ‖→ 0 as n → ∞ for every disjoint sequence (xn) in the solid
hull of A.

Definition 2.2. ([1,5])A continuous linear operator T : E → X is called M -
weakly compact if limn→∞ ‖ Txn ‖= 0 for every disjoint sequence (xn) in the
closed unit ball of E.

Adjoint of an M-weakly compact operator is an L-weakly compact and
adjoint of an L-weakly compact operaor is an M-weakly compact. Every L-
weakly compact and M-weakly compact operators are weakly compact.

Theorem 2.1. ([1,4]) Let X be a Banach space and E be a Banach lattice.
Assume that T : X → E is a linear operator. Then, the following assertions
are true:
(i) If T is a compact operator , then T is a b-semicompact operator.
(ii) If T is an L-weakly compact operator, then T is b-semicompact.
(iii) If T is a semicompact operator, then T is b-semicompact.

Proof. The proof is done directly by using the definitions.

By L(X,E) we denote the vector space of all continuous linear operators
from a Banach space X into a Banach lattice E.

Theorem 2.2. ([1,4]) The collection of all b-semicompact operators from a
Banach space X into a Banach lattice E form a closed subspace of L(X,E).

The collection of all b-semicompact operators form closed two- sided ideals
in the space of all regular operators Lr(E,E) = Lr(E).

Theorem 2.3. ([1]) Let S, T : E → F be positive linear operators between
Banach lattices. Then, the following assertion are true:
(i) If T is an M weakly compact operator, then T is b-semicompact.
(ii) If 0 ≤ S ≤ T and T is b-semicompact operator, then S is b-semicompact.

By Lw(X,E) we denote the set of all L-weakly compact operators, by
Ls(X,E) we denote the set of all semicompact operators and by Lbs(X,E) we
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denote the set of all b-semicompact operators. The following result is known
from [4]: E is a KB space if and only if Lw(X,E) = Ls(X,E) = Lbs(X,E).

Let X and Y be Banach spaces and T : X → Y be a continuous linear
operator.The adjoint operator T ′ of T is defined from Y ′ into X ′ by T ′(f)(x) =
f(Tx) for every f ∈ Y ′ and for every x ∈ X.

Theorem 2.4. Suppose that X is a Banach space and a Banach lattice E has
an order continuous norm. Let T : E → X be a continuous linear operator
such that adjoint T ′ of T is a b-semicompact operator . Then, T is an order
weakly compact operator.

Proof. Since the topological dual E′ of E is KB space, T ′ : X ′ → E′ is an
L-weakly compact operator. So, T is an M-weakly compact operator. Every
M-weakly compact operator is weakly compact and every weakly compact
operator is an order weakly compact operator.

Theorem 2.5. Suppose that X is a Banach space and a Banach lattice E is
a KB space. If T : X → E is a b-semicompact operator, then adjoint operator
T ′ : E′ → X ′ is an order weakly compact operator.

Proof. Since E is a KB space, T is an L-weakly compact operator.Adjoint
T ′ of T is an M-weakly compact operator. This implies that T ′ is a weakly
compact operator. Since every weakly compact operator is an order weakly
compact, we have proven the claim.

Theorem 2.6. ([1])Let T : X → E be a b-semicompact operator from a
Banach space X into a Banach lattice E. Then, there exists some y in the
positive cone of E′′ such that the ideal Ay generated by y satisfies T (X) ⊆ Āy.

Proof. We know that the ideal generated by y is

Ay = {x :| x |≤ n | y | for some n}.

For every n let us take 0 < un ∈ E′′ such that ‖ (| Tx | −un)+ ‖< n−1 holds
for all x ∈ ball(X). Let y =

∑∞
n=1 2−nun/ ‖ un ‖ . Let Ay be the ideal

generated by y.The sequence [un) is in Ay. Let x ∈ ball(X). It is easily seen
that | Tx |∈ Āy.It is known that the closure of an ideal is again an ideal. So,
Tx ∈ Āy. Hence, the result follows from here.

Definition 2.3. ([1,5])A Banach lattice E is called an abstract M-space(AM-
space) if ‖ x+ y ‖= max{‖ x ‖, ‖ y ‖} for every x, y ∈ E with x ∧ y = 0.

A Banach lattice E is said to be an abstract L-space (AL space) if dual E′

of E is an abstract M-space.
Every continuous linear operator from a Banach space into an AM -space

with unit is b-semicompact. Every regular operator from an AM -space with
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unit into a Banach lattice is b-semicompact.Hence, we can give the following
result.

Theorem 2.7. If T : E → X is a continuous linear operator between AL-
space E and Banach space X, then adjoint operator T ′ : X ′ → E′ is a b-
semicompact.

Note that adjoint of a b-semicompact operator is not necessary to be a b-
semicompact and we can not say that an operator is b-semicompact if adjoint
of an operator is a b-semicompact operator.

Theorem 2.8. Suppose that a Banach lattice E has an order continuous
norm and let T : E → E be a positive linear operator.If T ′ : E′ → E′ is
b-semicompact operator, then T : E → E is a b-semicompact operator.

Proof. Since E has an order continuous norm, the topological dual E′ is a KB
space.By hypothesis,T ′ : E′ → E′ is a b-semicompact operator.From here, T ′ is
an L weakly compact operator and so, T is M -weakly compact operator.Since
a positive M-weakly compact operator is a semicompact operator, it is a b-
semicompact operator.

Theorem 2.9. Let E be a KB-space and T : E → E be a positive linear
operator. If T : E → E is a b-semicompact operator, then T ′ : E′ → E′ is a
b-semicompact operator.

Proof. Since T is an L-weakly compact operator, it follows that its adjoint
T ′ : E′ → E′ is an M-weakly compact operator.Every positive M-weakly
compact operator is a b-semicompact operator. Hence, the claim is true.

Let T : X → Y be a continuous linear operator between Banach spaces
X and Y .Assume that Ring(T ) is the norm closure in L(X,Y ) of the vector
subspace consisting of all operators of the form

∑n
i=1RiTSi with Si ∈ L(X)

and Ri ∈ L(Y ) for i = 1, ..., n. We say that the closed vector subspace Ring(T )
of L(X,Y ) is the ring ideal generated by T .

Theorem 2.10. ([1]) Let S, T : E → E be positive linear operators on KB
space such that 0 ≤ S ≤ T holds.If S is a b-semicompact operator, then
S3 ∈ Ring(T ).

Theorem 2.11. ([1])Let E be a KB space and S, T ;E → E be positive linear
operators such that 0 ≤ S ≤ T . If T is an M -weakly compact operator,
S3 ∈ Ring(T ).

Proof. Since T is a M -weakly compact operator, T is a b-semicompact op-
erator. By the definirtion of b-semicompact operator, S is b-semicompact
operator. If you pass to adjoint, then 0 ≤ S′ ≤ T ′ holds. So, T ′ is an L-
weakly compact operator. By the domination property, S′ is a b-semicompact
operator. Therefore, the result is true.
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Abstract The erosion is a complex process determined by different physical and biological
factors. It is difficult to find a mathematical model that captures all the details
of the sediment transport through water flow in the presence of vegetation.
Consequently, we build a model that captures the essence of the phenomenon
by coupling Saint-Venant type equations for water dynamics with a Hairsine-
Rose type model for soil erosion, both taking into account the presence of
the plants on the soil surface. For numerical purposes, we discretize the PDE
system using a finite volume method for the space variables. To advance in
time, we use a two-step fractionary method. Finally, several numerical results
are presented.

Keywords: shallow water equation, soil erosion process, numerical approximation.

2010 MSC: 35K55, 65M08.

1. INTRODUCTION

Roughly speaking, the soil erosion is understood as the moving process, due
to different agents like wind, water or gravitational force, of a certain quantity
of soil from a soil surface point to another point. The detachment of the soil
particles and their transportation are very complicated and hardly quantifiable
processes. In addition, the presence of the vegetation increases the difficulty
of the mathematical modeling problem: the plant stems strongly interact with
the water motion and the roots modify the physico-chemical properties of the
soil.

Modeling at a catchment scale involves large variations in the physico-
mechanical properties of the soil, in its topography, as well as in its plant cover
structure. Given the complexity of the erosion processes, there are plenty of
models, each of them performing well for a narrowed class of factors that af-
fects the soil erosion. A very brief classification of the erosion models divides
them into empirical models (the most known in this class is RUSLE [6]) and
physically based model. For a deeper classification and comprehensive review,
the reader can see for example [2].
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Among physical based models, the shallow water equation for water dynam-
ics and Hairsine-Rose model for erosion process [1, 5, 9] are most suited to be
used in order to analyze the plant influence on the water dynamics and soil
erosion. Tu summarize this paper, we introduce such a mathematical model
in section 2 and present an analytical solution in section 3. This solution can
be used as a validation tool for the numerical method briefly presented in sec-
tion 4. In the end, we present several scenarios concerning the environmental
variables and give some conclusions.

2. MATHEMATICAL MODEL OF EROSION IN
THE PRESENCE OF VEGETATION

To produce a useful model, one is forced to retain the driving factors of
the process and find the best suited mathematical objects that model them
and their interactions. Since our concern is to qualitatively analyze the plant
effect on the erosion of the soil, we build our model based on the following
assumptions:

– the main driving force of the erosion is the water flow;
– the soil surface is covered by plants which can be considered as rigid sticks

that are taller than the water level;
– the sediment consists of two phases: suspended particles in water and

deposited layer;
– there is a mass exchange between the suspended and deposited phases;
– the sediment in the deposited layer can only move on vertical direction

by saltation process.
In this context, the model must take into account the water dynamics and

the water interactions with plant stems and soil surface. Consequently, we
propose a model that couples a variant of the shallow water equation model
and a modified Hairsine-Rose model for soil erosion.

Both models differs from their classical formulations by the presence of a
new function that takes into account the density of the vegetation. In this
coupled model, the soil surface is modeled by the altitude function z(x) and
the vegetation is quantified by the porosity function θ(x). The reader should
note that θ(x) = 1 for bare soil and θ(x) plays the role of soil porosity in the
porous media theory. Note also that these altitude and porosity functions are
environmental variables which must be know from measurements.

The hydrodynamic variables that account for water moving on the soil sur-
face are the water depth h(t, x) and the components va(t, x), a = 1, 2 of the
water velocity v.

The sediment is partitioned into N size classes and it consists of a suspended
phase and a deposited phase. Let us denote the mass density of the suspended
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sediment of size class α by ρα(t, x) and the mass density of the deposited
sediment of size class α by mα(t, x).

The state variables of the model are {h(t, x), va(t, x), ρα(t, x), mα(t, x)}
and their evolution is governed by the equations

∂t(θh) + ∂a(θhv
a) = 0,

∂t(θhv
a) + ∂b(θhv

avb) + θhgδab∂b(z + h) = τav + τas , a = 1, 2,
(1)

∂t(θhρα) + ∂a(θραhv
a) = θ(eα + erα − dα), α = 1, N, (2)

∂tmα = θ(dα − erα), α = 1, N. (3)

where g denotes the gravitational acceleration. The terms τav and τas quantify
the water-plant and water-soil interactions, respectively. The erosion and sed-
imentation processes are modeled through the terms eα - entrainment rate, erα
- re-entrainment rate and dα - deposition rate of the sediment from the size
class α, respectively.

One assumes that the flow resistance exercised by plants and soil obeys laws
(4) and (5), respectively

τav = −αvh (1− θ) |v|va, (4)

τas = −θαs|v|va, (5)

where αv and αs are material parameters. The coefficient αv depends on the
geometry of the plants from the vegetation cover, while αs depends on the soil
roughness.

In the Hairsine-Rose model [1, 5, 9], the entrainment and deposition rates
are given by

dα = νs,α · ρα,

eα = pα(1−H)
F (Ω− Ωcr)+

J
,

erα = H
mα

mt

γs
γs − 1

F (Ω− Ωcr)+

gh
,

(6)

where pα is the proportion of the sediment in the original soil, νs,α is the
settling velocity of the sediment in the size class α, and γs is specific weight
of sediment.

The parameters F - effective fraction of power stream, J - energy of soil
particle detachment and Ωcr - critical power stream are specific to a given type
of soil.
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The erosion processes are controlled by the water flow through the stream
power Ω. In the present paper, we use the law

Ω = ρw|τ s||v|. (7)

The function

H = min

{
mt

m?
t

, 1

}
(8)

plays the role of a protecting factor of the original soil to the erosion process.
The terms

mt =

N∑
a=1

ma

and m?
t from (8) are the total mass of sediment deposited on the soil and the

mass required to protect the original soil from erosion, respectively.

3. ANALYTIC SOLUTIONS

Despite the complexity of the model equations (1-3), there are some con-
figurations of the soil surface and vegetation density distribution that allow
us to obtain the analytic solutions. Let us consider the case of the plain soil
surface with constant vegetation density. For such case, the problem reduces
to a 1-D model equation. Let ∂xz = −s0 be the constant gradient of the soil
surface and θ(x) = θ0 be the porosity of the cover plant. If h0 and v0 satisfy

v2
0 =

θ0gh0s0

αvh0(1− θ0) + θ0αs
, (9)

then
h(t, x) = h0, v(t, x) = v0

is a solution of the shallow water equation (1).
In the case of uniform flow h(t, x) = h0, v(t, x) = v0, one can find analytic

solutions of sediment equations for bare soil, see [7, 9]. Similarly, one can
find analytic solution when vegetation is present, but uniform flow must be
assumed.

We introduce the following notations:

Γ :=
γs

γs − 1

F (Ω(v0)− Ωcrt)+

gh0
, Λ :=

F (Ω(v0)− Ωcrt)

J
, q := h0v0. (10)

Net erosion

For a numerical validation purpose, we introduce the analytic solution of the
net-erosion process. But we must remark that for the uniform flow, the solu-
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tions of the sediment are similar for both cases: with or without vegetation.
What differs is the equilibrium relations among the hydrodynamic variables
h0, v0, θ0 and s0.

Water flow generates a net erosion of the soil if the total mass mt of the
deposited sediment is smaller than the m∗t , i.e. H := mt/m

∗
t < 1. In order to

have a steady state of mα, the following must hold

νs,α · ρα = Γ
mα

m∗t
. (11)

The suspended sediment solves the equations

q
dρα
dx

= pαΛ

1− 1

Γ

N∑
β=1

νs,β · ρβ

 , (12)

Using (11) and (12), one obtains an equation for the ratio mt/m
∗
t

q
d

dx

mt

m∗t
=

Λ

Γ

∑
α

νs,α · pα
(

1− mt

m∗t

)
(13)

which has the solution

mt

m∗t
(x) = 1 +

(
mt

m∗t
− 1

)
x=0

exp

(
− Λ

qΓ

∑
α

νs,α · pαx

)
. (14)

The condition H < 1 is satisfied for all x > 0 if

mt

m∗t
(0) =

1

Γ

∑
α

νs,α · ρα(0) < 1. (15)

Using the solution (14), one obtains

ρα(x) = ρα(0)+
pαΓ∑

β

νs,β · pβ

 1

Γ

∑
β

νs,β · ρβ(0)− 1

exp

− Λ

qΓ

∑
β

νs,β · pβx

− 1

 .
(16)

4. NUMERICAL SCHEME

The numerical scheme we use in this paper is obtained using a finite volume
method to discretize the space variable and then a fractional time step method
to integrate an ODE system.
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Using a finite volume method to approximate (1-3), one gets an ODE system
of the form

∂tU + F(U) = R(U), (17)

where U is the vector of the unknowns, F is the “flux” term generated by the
derivative of the space variable, and R is the “source” term.

The fractional time step is a method for approximating the solution of the
ODEs by splitting the initial model into two sub-models, separately integrating
each of these sub-models and then combining the two obtained solutions, [8,
10].

Let us consider
∂tU + F(U) = S1(U) + S2(U), (18)

and let E1(t) be an approximating evolution operator of

dU

dt
= S1(U)

and E2(t) an approximating evolution operator of

dU

dt
+ F = S2(U).

Then, a second order approximation of the problem (18) is given by

U(t+4t) = E1(4t/2)E2(4t)E1(4t/2)U(t). (19)

One can find the explicit form terms used for (17-19) in the paper [4]. Here,
we note that F(U) consists of the discrete approximation of conservative flux
in (1), S1(U) counts for the entrainment rate and S2(U) takes into account
the remaining terms in (1-3).

5. NUMERICAL SIMULATION. 1-D CASE

In this section we present some numerical tests in order to illustrate the
ability of our model and our numerical scheme to capture the effects of the
variation of the soil surface geometry and the vegetation density on the erosion
process. In all these numerical experiments, we will work with the 1 − D
domain Ω = (0, L).

The analysis is performed starting from a reference case given by a bare
soil with constant slope. We also assume that there is only one size class of
sediment, N = 1.

In all the cases we will work here, we consider that there is an inflow of
water and sediment at the upper side (x = 0) of the slope

h|x=0 = h0, v|x=0 = v0, ρ1|x=0 = ρ0
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and free discharge at the other boundary x = L.
The values of the hydrodynamic variables and of the parameters for the soil

and sediment are given in Table 1.

Table 1 The data used in the reference case.

h0[m] v0[ms−1] F J [Jkg−1] Ωcr[Wm−2] m∗t s0 p1 ν1[ms−1]

5e−2 0.2 0.01 0.2 0.007 100 0.0625
q = 0.01m2s−1, ρ0 = 13.51 kgm−3 1 0.003

Comparison of the numerical and analytic solution for net erosion
For the reference case previously considered, the analytic solutions of m1(x)
and ρ1(x) are known (given by (14) and (16), respectively). Figure 1 shows
that the numerical solutions provided by our scheme follows closely the path
of the exact solutions.
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Fig. 1. Comparison of the exact and numerical solutions for the net erosion. The input
parameters are given in Table 1. The distributions of the suspended and deposited sediment
are illustrated in the left and right pictures of the first row, respectively. The asymptotic
behavior of the relative error of the solutions is presented in the second row.
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The influence of the soil surface topography on the erosion process
We now consider the case of a bare soil with piecewise constant slope. The
soil surface z(x) on the domain Ω is formed by the two segments of different
slopes connected at x = L/2, segments resulting from the surface line of the
previous case by moving the point (L/2, z(L/2)) to (L/2, z(L/2)(1−δz)). One
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Fig. 2. The influence of soil gradient variation on the erosion process. The input parame-
ters, except the slope s0, are given in Table 1.

can easily observe (see Figure 2) that a change in the soil surface topography
will immediately bring an expected change in the erosion process: the higher
the surface gradient is, the higher the erosion process is also.

The influence of the vegetation density on the soil erosion
For this last case, let us consider a plant barrier on a bare soil modelled by

θ(x) =

{
θ0, x ∈ (x0, x1)
1, x ∈ (0, x0) ∪ (x1, L)

.
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Fig. 3. The influence of vegetation density variation on the erosion process. The input
parameters are given in Table 1.
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The distributions of the hydrodynamic variables are shown in Figure 4.
Note that plants act like a barrier against the water flow, the water level is
raising in front of the filter and its speed decreases.

As expected, a decreasing level of velocity induces a reduction of the erosion
rate and in the same time an increase of the deposition rate. The magnitude of
these modification rates depends on the plant density in the filter, see Figure
3.
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Fig. 4. The influence of vegetation density variation on hydrodynamic variables, velocity
(left) and free surface (right). The input parameters are given in Table 1.

6. CONCLUSION

In this paper, we propose a mathematical model and a numerical scheme
to integrate it for water motion and soil erosion on downhill. The model takes
into account the presence of the plant cover. It was shown that the numerical
solution is asymptotically convergent (in time) to the net erosion solution, see
Figure 1. Our model is able to capture the essential features of the physical
process induced by the variation of the plant cover density, see Figure 4, or
the variation of the soil surface gradient, see Figure 3.
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Abstract In some the previous work, we have studied an affine system of Walsh type gen-
erated by a periodic function in connection with a multishift in Hilbert space.
In this paper, we give a new method for characterization of Bessel system. This
method is based on the consideration of the question:under which necessary
and sufficiently conditions on the function ϕ an affine system of functions of the
Walsh type {ϕn}n≥0 to be Bessel system in the space L2(0, 1)?Finally, some
examples are given to explain our representation method.
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1. INTRODUCTION

The new notion of affine system of Walsh type was introduced, studied
and proved results about orthogonalizing and completion with preservation of
structure of affine system by Terekhin P.A.[1]. Our results work in [2] about
affine system of Walsh type can be classified in to three sections results:first,
on the basis of the functional analytic structure of a multishift in a Hilbert
space, which is a generalized analogue of the operator(simple, one-side)shift
and closely related to the representations of the Cuntz C∗-algebra, the defi-
nition of an affine system of functions of the Walsh type was given, second,
various criteria and signs of the completeness of affine systems of functions
were given, finally, the minimality of the affine system is established as well
as an explicit form of the biorthogonally conjugate system of functions was
indicated and its completeness was established. Mironov V.A., Sarsenbi A.M.,
and Terekhin P.A.,[10] studied an affine Bessel sequences in connection with
the spectral theory and the multishift structure in Hilbert space. They con-
structed a non-Besselian affine system {un(x)}∞n=0 generated by continuous pe-
riodic function u(x). Their results were based on Nikishin’s example concern-
ing convergence in measure, also they showed that affine systems {un(x)}∞n=0
generated by any Lipchitz function u(x) are Besselian.

159
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Definition 1.1. Let H be a Hilbert space, and

W0,W1 : H → H

isometric operators operating in space H. Let’s say that the two isometrics
W0 and W1 define the structure of multishifts, if there is a vector e ∈ H such
that:

Wα1 . . .Wαk−1
e, αv ∈ {0, 1} , 0 ≤ v ≤ k − 1, k ≥ 0,

forms an orthonormal basis of the space H.

Remark 1.1. The concepts of multishift was introduced and studied in many
works [3–5].

Suppose that, the function ϕ(s), s ∈ <, (where < is a real number space),
satisfied the condition:

ϕ(s) ∈ L2[0, 1],

∫ 1

0
ϕ(s)ds = 0, ϕ(s+ 1) = ϕ(s),

and let L2
0 = L2

0(0, 1) be a space such functions (where, L2
0 is the space of

square - integral and having a zero integral ), as well as, we denote a linear
operators in this space as:

W0ϕ(s) = ϕ(2s),W1ϕ(s) = r(s)ϕ(2s), (1)

where r(s) is the periodic function:Haar-Rademacher-Walsh.

For any n ∈ N , using the binary representation, n =
∑k−1

v=0 αv2
v + 2k we set:

ϕn(t) = ϕα(t) = ϕkj(t) = Wnϕ(t) = Wαϕ(t) = Wα1 . . .Wαkϕ(t),

where,
k = 0, 1, ...; j = 0, 1, ..., 2k−1, α = (α1, . . . , αk) ∈ Ω,Ω =

⋃∞
k=0 {0, 1}

k Besides,
we set ϕ0(t) ≡ 1,

Wα1 . . .Wαk ,

denote the product of the operators:the operator Wαk acts first, Wα1 acts last,
and the empty product is set the equal to the identity operator I. For any
function ϕ ∈ L2

0, we have:

ϕα(t) = Wαϕ(t) = Wα0 . . .Wαk−1
ϕ(t) =

ϕ(2kt)rαk−1(2k−1t) . . . rα0(t) = ϕ(2kt)

k−1∏
v=0

rαvv (t),

where, rk(t) = r(2kt), k = 0, 1, ... is Rademacher system .
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Definition 1.2. The system {ϕn}n≥0 = {Wαϕ} is the affine system of Walsh
type of the function ϕ without the constant ϕ0(t) ≡ 1.

If the generating function select ω(t) = r(t), then the system {ωn}∞n=0 will
the classical system of Walsh-Paley system. Walsh functions (without constant
ω0(t) ≡ 1):

ωn(t) = ωα(t) = Wαω(t) = Wα0 . . .Wαk−1
ω(t) = rk(t)

k−1∏
v=0

rαvv (t),

forms an orthonormal basis of the space H = L2
0(0, 1), therefore according to

the definition(1.1) operators:

W0ϕ(t) = ϕ(2t),W1ϕ(t) = r(t)ϕ(2t),

define the structure of multishift[2].

Definition 1.3. [6]. The Walsh-Paley system, ω = (ωn, n ∈ N) is defined
as:if n =

∑∞
k=0 nk2

k ∈ N ∪ {0} has binary coefficient (nk, k ∈ N ∪ {0}), then

ωn =

∞∏
k=0

rnkk , (2)

where,

r(x) =

{
1, x ∈ (0, 1/2)
−1, x ∈ (1/2, 1)

r (x+ k) = r (x), x ∈ (0, 1), k ∈ N and rk(x) = r(2kx), x ∈ <, k ∈ N ∪ {0},
where r(x) is the Rademacher functions.

Definition 1.4. A system (sequence) {ϕn}n∈N in Hilbert space H is called a
Bessel system, if there exists a positive constant B for which

∞∑
n=1

|(g, ϕn)|2 ≤ B ‖g‖2 , ∀g ∈ H. (3)

Definition 1.5. [7]. Let n ≥ 0, the Cuntz algebra Θn is the C∗-algebra
generated by some isometries (Si)i∈Zn satisfying the Cuntz relations:

S∗i Sj = δijI,
∑
i∈Zn

S∗i Sj = I, (4)

where, i, j ∈ Zn.
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It should be noted that the extensions of operators {W0,W1} to the space
L2 (0, 1) of periodic function ϕ(t) are defined by:

V0ϕ(t) = ϕ(2t), V1ϕ(t) = r(t)ϕ(2t). (5)

From equation(1.4), we have representation of the Cuntz algebra Θ2, which
satisfy the Cuntz relations:

V ∗i Vj = δijI,

V0V
∗

0 + V1V
∗

1 = I.

Thus, the operators structure of the multishift {W0,W1} is a restriction to
the subspace L2(0, 1) of the representation {V0, V1} in the space L2(0, 1) of
the Banach C∗-algebra of Cuntz Θ2.

2. THE MAIN RESULTS WITH EXAMPLES

Lemma 2.1. The system
{
ϕk,j

}2k−1

j=0
(k-fixed) is orthogonal block system.

Proof The system
{
ϕk,j

}2k−1

j=0
= {Wαϕ}α∈Ω. This is implies to that:

Wαϕ ∈WαH.

Since,
WαH⊥W βH,α 6= β, |α| = |β| = k.

Also,
Wαϕ ∈WαH,

W βϕ ∈W βH.

Then, we have: (
Wαϕ,W βϕ

)
= 0.

From above, we have that: {Wαϕ}|α|=k is orthogonal block system.

Lemma 2.2. For all α, β ∈ Ω, we have:(
ωα, ϕβ

)
=

{
(ωα, ϕ) , ifα = βγ

0, o.w.

Proof. Write the Fourier-Walsh series of the function ϕ as:

ϕ =
∑
γ∈Ω

(ϕ, ωγ)ωγ .
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Also, we have:

ϕβ = W βϕ =
∑
γ∈Ω

(ϕ, ωγ)W βωγ =
∑
γ∈Ω

(ϕ, ωγ)ωβγ .

On other hand
ϕβ =

∑
γ∈Ω

(
ϕβ, ωα

)
ωβα, α = βγ.

The coefficient of the Fourier-Walsh series are unique. Also, if α = βγ for
some γ ∈ Ω, then (

ϕβ, ωα
)

= (ϕ, ωγ) .

It should be noted that, if α can not be expressed as βγ, ∀γ ∈ Ω , then(
ϕβ, ωα

)
= 0.

Theorem 2.1. Let ϕ ∈ L2 (0, 1),suppϕ ⊂ [0, 1],
∫ 1

0 ϕ(t)dt = 0. If the inequal-
ity:

∞∑
k=0

2k−1∑
j=0

|(ϕ, ωkj)|2
1/2

= c <∞.

Then the affine system of Walsh type {ϕn}n≥0 is Bessel system with Bessel

constant B = max {1, c}2.

Proof. Write the Fourier-Walsh series of the function ϕ as:

ϕ =
∑
α∈Ω

xαωα,

and write the polynomial of affine system {ϕn}n≥1 finite sum as:

P =
∑
β∈Ω

cβϕβ.

We consider for k = 0, 1, . . ., the Walsh-Paley polynomials can be represented
as:

Pk =
∑
|α|=k

xα
∑
β∈Ω

cβωβα.

The system {ωβα : |α| = k(k − fixed), β ∈ Ω} is orthogonal system.

ωβα = ω
β
′
α′
,
∣∣∣α′∣∣∣ = k, β

′
α
′ ∈ Ω, α = α

′
, β = β

′
, β
′ ∈ Ω.
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Now, if βα = β
′
α
′
, then:

|α|+ |β| =
∣∣∣α′∣∣∣+

∣∣∣β′∣∣∣ , |α| = ∣∣∣α′∣∣∣ and |β| = ∣∣∣β′∣∣∣ , α = α
′
andβ = β

′
.

We can count:

‖Pk‖ =

 ∑
|α|=k,β∈Ω

|xαcβ|2
1/2

=

∑
|α|=k

|xα|2
1/2∑

β∈Ω

|cβ|2
1/2

.

And
∞∑
k=0

‖Pk‖ =

∑
β∈Ω

|cβ|2
1/2

.
∞∑
k=0

∑
|α|=k

|xα|2
1/2

<∞.

We calculate:

(P, ωγ) =
∑
β∈Ω

cβ
(
ϕβ, ωγ

)
=

∑
α,β:γ=βα

cβ (ϕ, ωα) =
∑

α,β:γ=βα

xαcβ,

(By using Lemma(2.2)).( ∞∑
k=0

Pk, ωγ

)
=

∞∑
k=0

(Pk, ωγ) =

∞∑
k=0

∑
|α|=k

xα
∑
β∈Ω

cβ (ωβα, ωγ) =
∑

α,β:γ=βα

xαcβ.

Since, (ωβα, ωγ) = δβα,γ .
From the above, we have the following induction:P =

∑∞
k=0 Pk !

Now:

‖P‖ ≤
∞∑
k=0

‖Pk‖ =
∞∑
k=0

∑
|α|=k

|xα|2
1/2∑

β∈Ω

|cβ|2
1/2

,

we have: ∥∥∥∥∥∥
∑
β∈Ω

cβϕβ

∥∥∥∥∥∥ ≤ ‖ϕ‖∗
∑
β∈Ω

|cβ|2
1/2

,

where, ‖ϕ‖∗ =
∑∞

k=0

(∑
|α|=k |xα|

2
)1/2

.

It is equivalent to Bessel inequality:∑
β∈Ω

∣∣(g, ϕβ)∣∣2
1/2

≤ ‖ϕ‖∗ ‖g‖ ,
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( ∞∑
k=0

|(g, ϕn)|2
)1/2

≤

(∫ 1

0
g(t)dt

)2

+
∑
β∈Ω

∣∣(g, ϕβ)∣∣2
1/2

,

≤ max {1, ‖ϕ‖∗} . ‖g‖2 ,
∞∑
n=0

|(g, ϕn)|2 ≤ B ‖g‖2 , B = max {1, ‖ϕ‖∗}2 .

Then, we have:if

‖ϕ‖∗ =
∞∑
k=0

∑
|α|=k

|xα|2
1/2

<∞.

Then the affine system of Walsh type {ϕn}n≥0 is Bessel system.

Remark 2.1. Theorem (2.1) in this paper is an analog of some results ob-
tained by the authors in [8–10].

We are going to give some examples to apply theorem (2.1). These examples
are based on consideration that:H∞ is the Banach algebra of analytic functions
on the open unit disk and G(H∞) is the group of invertible elements of the
algebra H∞. Note that for ζ to be belong to G(H∞), it is necessary and
sufficient that the function ζ(z) be analytic on the disk (|z| < 1) and that the
following inequalities be valid:

0 < inf |ζ(z)| , sup |ζ(z)| <∞.

Let ϕ ∈ R(H), where R(H) is the space of Rademacher. Let R(H) =
span[rk]be linear closure of the span Rademacher system {rk}∞k=0. The space
R(H) invariant with respect to W0 and the multishift operator R(H) as:

rk = W k
0 r, k = 0, 1, . . . .

And

ϕ(t) =

∞∑
k=0

akrk,

∞∑
k=0

|ak|2 <∞. (6)

We assign the analytic function:

φ(z) =
∞∑
k=0

akz
k. (7)

In the unite disk D = (|z| < 1) of Hardy space H2(D), with the coefficient ak
from equation(2.6). This mapping is an isometric isomorphism of R(H) on to
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Hardy space H2(D), and the restriction of W0 to R(H) is unitary equivalent
by this mapping to the operator of multiplication by z, i.e. is a shift operator.

Theorem 2.2. [11].Let {ωn}n≥0 be the Walsh system, {rk}k≥0 be the Radem-
acher system and

ϕ =

∞∑
k=0

akrk,

∞∑
k=0

|ak|2 <∞.

If the analytic function

φ(z) =
∞∑
k=0

akz
k, |z| < 1,

belong to G(H∞), then the affine system of Walsh type {ϕn}n≥0 is Riesz bases

in L2(0, 1).

Example 2.1. The analytic function

φ(z) =
∞∑
k=0

akz
k, |z| < 1,

has no zero in the closed unit circle, then affine system of Walsh type {ϕn}n≥0forms
Riesz bases and since any Riesz bases is Bessel system, then affine system of
Walsh type {ϕn}n≥0forms Bessel system too. Indeed of Wiener theorem an
absolutely convergent series Tayler follows that φ ∈ G(H∞).

Example 2.2. Let ϕ(t) = 1 − 2t, 0 < t < 1 and satisfy the following con-

dition
∫ 1

0 ϕ(t)dt = 0. ϕ ∈ R(H), this meaning that, the function ϕ can be
representation as Rademacher system:

ϕ =

∞∑
k=0

akrk =

∞∑
k=0

rk
2k+1

.

Then the corresponding analytic function as:

φ(z) =
∞∑
k=0

akz
k =

∞∑
k=0

zk

2k+1
=

1

2− z
.

It is observe that, φ ∈ G(H∞), then, we have the affine system of Walsh type
{ϕn}n≥0 forms Riesz bases and Bessel system.

Theorem 2.3. Let {wn}n≥0 be the Walsh system, {rn}∞n=0 be the Rademacher

system and ϕ ∈ L2
0, ϕ =

∞∑
k=0

akrk,
∞∑
k=0

|ak|2 <∞. Then, affine system of Walsh
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type {ϕn}n≥1 is Riesz bases iff

0 < c1 ≤ |φ(z)| ≤ c2 <∞,

where,

φ(z) =
∞∑
k=0

akz
k, |z| < 1,

is analytic function.
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Abstract Shannon entropy was defined for probability distributions and then its using
was expanded to measure the uncertainty of knowledge for systems with com-
plete information. In this article, it is proposed to extend the using of Shannon
entropy to under-defined or over-defined information systems. To be able to
use Shannon entropy, the information is normalized by an affine transforma-
tion. The construction of affine transformation is done in two stages: one
for homothety and another for translation. Moreover, the case of information
with a certain degree of imprecision was included in this approach. Besides,
the article shows the using of Shannon entropy for some particular cases such
as: neutrosophic information both in the trivalent and bivalent case, bifuzzy
information, intuitionistic fuzzy information, imprecise fuzzy information, and
fuzzy partitions.

Keywords: Shannon entropy, under-defined information, over-defined information, neu-

trosophic information, bifuzzy information, intuitionistic fuzzy information, imprecise fuzzy

information, fuzzy partitions.
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1. INTRODUCTION

The Shannon entropy [12] plays an important role in the information un-
certainty computing. Thus, if the information vector is defined by formula:

p = (p1, p2, . . . , pn) ∈ [0, 1]n (1)

and it verifies the condition of partition of unity, namely,

n∑
j=1

pj = 1 (2)

then, we compute the Shannon entropy using the well-known formula:
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ES(p) = − 1

ln(n)

n∑
i=1

pi ln(pi) (3)

The formula (3) can be used only and only the information vector verifies
the condition of the partition of unity (2). But, what happens when the
information is under-defined, when there exists the following inequality:

n∑
j=1

pj < 1. (4)

Also, what happens when the information is over-defined, when there exists
the following inequality:

n∑
j=1

pj > 1. (5)

Usually, the degree of uncertainty for a vector information can have values in
the interval [0, 1]. Consequently, it is evidently that there exist different vectors
from the n-dimensional unit hypercube that have the same value for the degree
of uncertainty. For any value from the interval [0, 1] it can associated a class
of vectors that have for the degree of uncertainty a specified value. Hence,
it results the following idea: for each information vector p that verifies the
conditions (4) or (5), we must find an equivalent information vector p̂ that
verifies the condition (2) and then we obtain the entropy ES(p) calculating
entropy ES(p̂) using formula (3). The obtaining of the equivalent vector p̂
will be done using a normalization transformation and in the end it results a
vector that verifies the condition of partition of unity (2).

Usually, the equivalent vector p̂ = (p̂1, p̂2, . . . , p̂n) is obtained under the
condition of the information proportionality, and it is determined a real and
positive number λ, so that:

p̂ = λ · p. (6)

From the condition (2) applied to vector p̂ it results the number λ :

λ =

 n∑
j=1

pj

−1

. (7)

Using the scaling factor, it is obtained the normalized vector p̂:

p̂i =
pi∑n
j=1 pj

. (8)
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The formula (8) has a deficiency because it becomes instable when the
sum of the components approaches to zero. In addition, we cannot use the
normalization transformation defined by (8), if the information vector p =
(p1, p2, . . . , pn) has a degree of imprecision defined by the parameter s ∈ [0, 1].
In this context, we are faced to compute the Shannon entropy for the extended
vector of information denoted by P and defined by:

P = (p1, p2, . . . , pn, s). (9)

It is observable that the formula (8) does not take into account the degree
of imprecision s and this is an additional disadvantage. In order to solve the
problem of information normalization, we will construct an affine transfor-
mation having two steps: a translation transformation [8] and a homothetic
one [7]. Next, the article has the following structure: section 2 shows the
construction of homothetic transformation; section 3 shows the construction
of translation transformation; section 4 shows the aggregation of homothetic
and translation in an affine transformation; section 5 shows particular cases
of using of the proposed entropy computing method; section 6 shows some
conclusions while the last section is that of references.

2. HOMOTHETIC TRANSFORMATION FOR
OVER-DEFINED INFORMATION

In this section, we will analyze the case of over-defined information and
without having the degree of imprecision. In other words, the vector of in-
formation p = (p1, p2, . . . , pn) verifies the inequality (5) and the degree of
imprecision is zero, namely:

n∑
j=1

pj > 1 (10)

and

s = 0. (11)

We can write the Jensen inequality [5], [6]:

−
n∑
i=1

pi ln(pi) ≤ −
n∑
i=1

pi ln

 1

n

n∑
j=1

pj

 , (12)

and the following equivalent forms:
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−
n∑
i=1

pi∑n
j=1 pj

ln

(
pi∑n
j=1 pj

)
≤ ln(n), (13)

− 1

ln(n)

n∑
i=1

pi∑n
j=1 pj

ln

(
pi∑n
j=1 pj

)
≤ 1. (14)

We obtained the Shannon entropy for over-defined information:

ES(p) = − 1

ln(n)

n∑
i=1

pi∑n
j=1 pj

ln

(
pi∑n
j=1 pj

)
. (15)

We will denote:

p̂i =
pi∑n
j=1 pj

, (16)

and (15) becomes:

ES(p) = − 1

ln(n)

n∑
i=1

p̂i ln(p̂i). (17)

The formula (17) represents the Shannon entropy that is utilized for the
normalized information obtained using the homothetic transformation (16).
The information vector p̂ describes normalized information and belongs to the
polytope defined by (2). But, the formula (16) becomes quite instable when
the sum (

∑n
j=1 pj) is approaching zero. Because of that, we will directly use

this normalization only when the sum (
∑n

j=1 pj) is greater than one, namely

when the information is over-defined. When the sum (
∑n

j=1 pj) is less than
one, namely the information is under-defined, we firstly do a translation and
secondly the homothety defined by (16). The translation is presented in the
next section.

3. TRANSLATION TRANSFORMATION FOR
UNDER-DEFINED INFORMATION

In the previous section, we have presented the normalization of over-defined
information. This is reduced to a simple homothety [7]. As we have said ear-
lier, the normalization of the under-defined information is done in two steps: a
translation and then a homothety. We will construct the translation, starting
from the assumption that two information vectors that have the same dis-
tances from the points with maximum certainty are equivalent and must have
the same entropy or uncertainty. The points with maximum certainty are the
vertices of the polytope described by (2). In other words, we will associate
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to each information vector p describing an under-defined information, a vec-
tor that describes an over-defined information and keeps the distances from
the vertices of the polytope defined by (2). This condition ensures that we
obtain an equivalent vector from the point of view of preserving the degree
of uncertainty. In the next, we will consider two unit hypercubes: one in
the n-dimensional space given by vector p defined by (1) and one in (n + 1)-
dimensional space given by vector P defined by (9). The vertices of the poly-
tope (2) are the points where the Shannon entropy is zero and are described
by vectors where a component is one and all the other (n−1) components are
zero.

We consider an n-dimensional vector where the jth component is 1, namely:

u = (0, . . . , 0, 1, 0, . . . , 0), (18)

and its extension in the (n+1)-dimensional space with zero on the last position
for imprecision parameter s:

U = (u, 0) = (0, . . . , 0, 1, 0, . . . , 0, 0). (19)

The vector obtained after the translation of vector p will be defined by
formula:

p̃ = (p1 + ϑ, p2 + ϑ, . . . , pn + ϑ). (20)

The translation parameter ϑ will be obtained solving the equation that
preserves the distance:

d(p̃, u) = d(P,U). (21)

Using the Euclidean distance, the equation (21) becomes:

(pj + ϑ− 1)2 +
n∑
i=1
i 6=j

(pi + ϑ)2 = (pj − 1)2 +
n∑
i=1
i 6=j

p2
i + s2, (22)

nϑ2 + 2ϑ(
n∑
j=1

pj − 1)− s2 = 0. (23)

We define the index of definedness by formula:

δ =

n∑
j=1

pj − 1, (24)

and we obtain the following equation from (23):
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nϑ2 + 2δϑ− s2 = 0. (25)

Of course, there are two solutions:

ϑ1,2 =
−δ ±

√
δ2 + ns2

n
. (26)

Since we are interested in over-defined information, we will only consider
the variant with plus and it results for the translation parameter the following
value:

ϑ =
−δ +

√
δ2 + ns2

n
. (27)

It results the translated vector components:

p̃i = pi +

√
δ2 + ns2 − δ

n
. (28)

The translated vector p̃ represents over-defined information because it ver-
ifies the condition (5), namely:

n∑
i=1

p̃i =

n∑
i=1

pi + nϑ, (29)

n∑
i=1

p̃i =

n∑
i=1

pi − δ,+
√
δ2 + ns2 (30)

n∑
i=1

p̃i = 1 +
√
δ2 + ns2 ≥ 1. (31)

In the second step, because the vector information p̃ is over-defined, we
can apply the homothetic transformation (16) and at the end, it results the
normalized vector p̂.

p̂i =
p̃i∑n
j=1 p̃j

. (32)

At the end, we will show that the parameter of translation can be obtained
using a second way. We consider the n-dimensional vector a that is the center
of the polytope (2)

a =

(
1

n
, . . . ,

1

n

)
, (33)
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and its extension in the (n+1)-dimensional space with zero on the last position
for imprecision parameter s:

A = (a, 0) =

(
1

n
, . . . ,

1

n
, 0

)
. (34)

The translation parameter ϑ will be obtained solving the equation that
preserves the following distances:

d(p̃, a) = d(P,A). (35)

Using the Euclidean distance, the equation (35) becomes:

n∑
i=1

(
pi −

1

n
+ ϑ

)2

=
n∑
i=1

(
pi −

1

n

)2

+ s2. (36)

Finally the equation (36) is the same with equation (25), namely:

nϑ2 + 2δϑ− s2 = 0. (37)

4. THE AFFINE TRANSFORMATION FOR
INFORMATION NORMALIZATION

After the presentation of the translation and homothetic transformations in
the previous sections, we conclude that the normalized information vector is
obtained applying an affine transformation [3], [4]:

p̂i = αpi + β, (38)

where the two parameters (α, β) are defined by:

α =
1

1 +
√
δ2 + ns2

, (39)

β =

√
δ2 + ns2 − δ

n

1 +
√
δ2 + ns2

, (40)

and after all it is obtained the following formula:

p̂i =
pi +

√
δ2 + ns2 − δ

n

1 +
√
δ2 + ns2

. (41)

In the next, we will consider the following two parameters:
the degree of under-definedness:
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u = max(−δ, 0), (42)

the degree of over-definedness:

o = max(δ, 0), (43)

Combining formulas (42), (43) and (41) it results consequently:

p̂i =
pi +

√
δ2 + ns2 − o+ u

n

1 +
√
δ2 + ns2

, (44)

p̂i =
pi +

2u

n
+

√
δ2 + ns2 − o− u

n

1 +
√
δ2 + ns2

, (45)

p̂i =
pi +

2u

n
+

√
δ2 + ns2 − |δ|

n

1 +
√
δ2 + ns2

. (46)

We define the cumulated imprecision:

h =
√
δ2 + ns2 − |δ|. (47)

As a final point, it results the formula for transformed vector components:

p̂i =
pi +

2u+ h

n
1 + |δ|+ h

. (48)

After this, we compute the Shannon entropy for under-defined or over-
defined information and supplementary having a degree of imprecision:

ES(p) = − 1

ln(n)

n∑
i=1

pi +
2u+ h

n
1 + |δ|+ h

 ln

pi +
2u+ h

n
1 + |δ|+ h

. (49)

If the imprecision is zero, namely s = 0, it results h = 0 and one obtains
the particular form:

p̂i =
pi +

2u

n
1 + |δ|

. (50)
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ES(p) = − 1

ln(n)

n∑
i=1

pi +
2u

n
1 + |δ|

 ln

pi +
2u

n
1 + |δ|

. (51)

In addition we can compute the Onicescu informational energy [9], the Tsal-
lis entropy [10], [15] or Renyi entropy [11]:

Onicescu informational energy:

EO(p) =
n∑
i=1

pi +
2u+ h

n
1 + |δ|+ h


2

. (52)

Tsallis entropy:

ET (p) =

1−
∑n

i=1

pi +
2u+ h

n
1 + |δ|+ h


α

α− 1
. (53)

Renyi entropy:

ER(p) =

1− ln

∑n
i=1

pi +
2u+ h

n
1 + |δ|+ h


α

1− α
, (54)

where α is a positive real number with α 6= 1. When α → 1 the Tsallis and
Renyi entropies recover the Shannon entropy.

Observation. Usually, at practical level, we have δ ≈ 0 and we can take
into account the following approximation for cumulated imprecision:√

δ2 + ns2 − |δ| ≈ s
√
n. (55)

It is obtained:

p̂i ≈
pi +

2u+ s
√
n

n
1 + |δ|+ s

√
n
. (56)

On the other hand, (56) is the exact formula for imprecise and complete in-
formation.
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5. SOME PARTICULAR CASES FOR SHANNON
ENTROPY

In the following we will present some particular cases for using of the
Shannon entropy: neutrosophic information, bifuzzy information, intuition-
istic fuzzy information, imprecise fuzzy information, and fuzzy partitions.

5.1. THREE-VALUED SHANNON ENTROPY
FOR NEUTROSOPHIC INFORMATION.

The neutrosophic information proposed by Smarandache [13], [14] is defined
by three parameters: degree of truth T ∈ [0, 1], degree of falsity F ∈ [0, 1] and
degree of neutrality I ∈ [0, 1]. The vector p = (T, I, F ) represents the primary
information. We define the neutrosophic definedness and under-definedness
by following two formulas:

D = T + F + I − 1, (57)

U = max(−D, 0). (58)

If D < 0 then the neutrosophic information is under-defined and if D > 0
then the neutrosophic information is over-defined. In this case for three-valued
Shannon entropy, we consider three points where the certainty is maximum,
namely pT = (1, 0, 0), pI = (0, 1, 0) and pF = (0, 0, 1). Using (50) it results

the three-valued normalized information p̂ = (T̂ , Î, F̂ ):

T̂ =
T +

2U

3
1 + |D|

, (59)

Î =
I +

2U

3
1 + |D|

, (60)

F̂ =
F +

2U

3
1 + |D|

. (61)

The neutrosophic information (T̂ , Î, F̂ ) verifies the condition of the partition
of unity:

T̂ + Î + F̂ = 1. (62)

The Shannon entropy is calculated using formula (51) and it results:
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ES(p) =−

T +
2U

3
1 + |D|

 ln

T +
2U

3
1 + |D|


ln(3)

−

I +
2U

3
1 + |D|

 ln

I +
2U

3
1 + |D|


ln(3)

−F +
2U

3
1 + |D|

 ln

F +
2U

3
1 + |D|


ln(3)

.

(63)

5.2. BI-VALUED SHANNON ENTROPY FOR
NEUTROSOPHIC INFORMATION

The neutrosophic information is described by parameters: degree of truth
µ ∈ [0, 1], degree of falsity ν ∈ [0, 1] and degree of imprecision ω ∈ [0, 1].

Whe define the following parameters:
the bifuzzy definedness:

δ = µ+ ν − 1, (64)

the bifuzzy incompleteness:

π = max(−δ, 0), (65)

the cumulated imprecision:

h =
√
δ2 + 2ω2 − |δ|. (66)

In this case for bi-valued Shannon entropy, we consider two points where
the certainty is maximum, namely pT = (1, 0, 0) and pF = (0, 1, 0). It results
its equivalent fuzzy degree of truth µ̂ and its fuzzy degree of falsity ν̂:

µ̂ =
µ+ π +

h

2
1 + |δ|+ h

, (67)

ν̂ =
ν + π +

h

2
1 + |δ|+ h

. (68)

The fuzzy information p̂ = (µ̂, ν̂) represents the bi-valued normalized form
of the primary information p = (µ, ν, ω) and there exists the equality:

µ̂+ ν̂ = 1. (69)
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Using the fuzzy information p̂ = (µ̂, ν̂) that was associated to the neu-
trosophic information p = (µ, ν, ω) we will compute the bi-valued Shannon
entropy by the following formula:

ES(p) =−

µ+ π +
h

2
1 + |δ|+ h

 ln

µ+ π +
h

2
1 + |δ|+ h


ln(2)

− ν + π +
h

2
1 + |δ|+ h

 ln

 ν + π +
h

2
1 + |δ|+ h


ln(2)

.

(70)

5.3. SHANNON ENTROPY FOR BIFUZZY
INFORMATION

The bifuzzy information [1], [2] is described by two parameters: degree
of truth µ ∈ [0, 1] and degree of falsity ν ∈ [0, 1]. We define the bifuzzy
definedness δ ∈ [−1, 1] and bifuzzy incompleteness π ∈ [0, 1] by:

δ = µ+ ν − 1, (71)

π = max(−δ, 0). (72)

In this case we consider two points where the certainty is maximum, namely
pT = (1, 0) and pF = (0, 1). We compute the fuzzy degree of truth µ̂ and fuzzy
degree of falsity ν̂ using (50) and it results:

µ̂ =
µ+ π

1 + |δ|
, (73)

ν̂ =
ν + π

1 + |δ|
. (74)

There exists the equality:

µ̂+ ν̂ = 1. (75)

Using the associated fuzzy information p̂ = (µ̂, ν̂) to the bifuzzy information
p = (µ, ν) we will compute the Shannon entropy by the following formula
derived from (51):
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ES(p) = −

(
µ+ π

1 + |δ|

)
ln

(
µ+ π

1 + |δ|

)
+

(
ν + π

1 + |δ|

)
ln

(
ν + π

1 + |δ|

)
ln(2)

. (76)

5.4. SHANNON ENTROPY FOR
INTUITIONISTIC FUZZY INFORMATION

The intuitionistic fuzzy information [1], [2] is described by two parameters:
degree of truth µ ∈ [0, 1] and degree of falsity ν ∈ [0, 1] verifying the following
inequality 1 ≥ µ+ ν.

We define the degree of incompleteness π by:

π = 1− µ− ν. (77)

The information is under-defined or incomplete and we will associate the
following fuzzy information with degree of truth µ̂ and degree of falsity ν̂:

µ̂ =
µ+ π

1 + π
, (78)

ν̂ =
ν + π

1 + π
, (79)

with:

µ̂+ ν̂ = 1. (80)

Using the associated fuzzy information p̂ = (µ̂, ν̂) to the intuitionistic fuzzy
information p = (µ, ν), we will compute the Shannon entropy by the following
formula derived from (51):

ES(p) = −

(
µ+ π

1 + π

)
ln

(
µ+ π

1 + π

)
+

(
ν + π

1 + π

)
ln

(
ν + π

1 + π

)
ln(2)

. (81)

Equivalent with:

ES(p) = −

(
µ̄

µ̄+ ν̄

)
ln

(
µ̄

µ̄+ ν̄

)
+

(
ν̄

µ̄+ ν̄

)
ln

(
ν̄

µ̄+ ν̄

)
ln(2)

. (82)

where the negation is calculated using formula:

x̄ = 1− x. (83)
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5.5. SHANNON ENTROPY FOR IMPRECISE
FUZZY INFORMATION

The fuzzy information [16] is described by the degree of truth µ ∈ [0, 1]
while the imprecise fuzzy information is described by the pair p = (µ, σ), where

µ ∈ [0, 1] is the degree of truth and σ ∈
[
0,

1

2

]
is the degree of imprecision. We

must mention that ν = 1 − µ represents the degree of falsity. The imprecise
fuzzy information can be seen as particular neutrosophic case where (T, I, F )
are defined by:

T = µ,

I = 2σ,

F = 1− µ.

In this framework, it results the following particular values for definedness
δ, cumulated imprecision h, fuzzy degree of truth µ̂ and fuzzy degree of falsity
ν̂:

δ = µ+ ν − 1 = 0, (84)

h = 2σ
√

2, (85)

µ̂ =
µ+ σ

√
2

1 + 2σ
√

2
, (86)

ν̂ =
ν + σ

√
2

1 + 2σ
√

2
, (87)

with:

µ̂+ ν̂ = 1. (88)

Using (51), we obtain Shannon entropy for imprecise fuzzy information:

ES(p) = −

(
µ+ σ

√
2

1 + 2σ
√

2

)
ln

(
µ+ σ

√
2

1 + 2σ
√

2

)
+

(
ν + σ

√
2

1 + 2σ
√

2

)
ln

(
ν + σ

√
2

1 + 2σ
√

2

)
ln(2)

.

(89)
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5.6. BI-VALUED SHANNON ENTROPY FOR
FUZZY PARTITION

We consider the fuzzy partition (w1, w2, . . . , wn) and there exists the equal-
ity,

w1 + w2 + . . .+ wn = 1. (90)

We order the membership functions and get the following decreasing set of
values:

o1 ≥ o2 ≥ . . . ≥ on, (91)

where

o1 = max(w1, w2, . . . , wn), (92)

and

on = min(w1, w2, . . . , wn). (93)

Firstly, we construct an intuitionistic fuzzy representation where µ = o1,
ν = o2 and π = 1 − o1 − o2. Secondly, we construct the fuzzy representation
where µ̂ and ν̂ are defined by (78) and (79). It results:

µ̂ =
o1 + π

1 + π
, (94)

ν̂ =
o2 + π

1 + π
. (95)

Using formula (51) for associated fuzzy information (µ̂, ν̂), one obtains the
bi-valued Shannon entropy for the fuzzy partition w:

ES(w) = −

(
o1 + π

1 + π

)
ln

(
o1 + π

1 + π

)
+

(
o2 + π

1 + π

)
ln

(
o2 + π

1 + π

)
ln(2)

, (96)

with its equivalent form derived from (82):

ES(w) = −

(
ō1

ō1 + ō2

)
ln

(
ō1

ō1 + ō2

)
+

(
ō2

ō1 + ō2

)
ln

(
ō2

ō1 + ō2

)
ln(2)

. (97)



184 Vasile Pătraşcu

There are other non-logarithmic formulas for bi-valued fuzzy partition en-
tropy computing such as the following three:

EK(w) = 1− |o1 − o2|
1 + π

, (98)

EE(w) =

√
1− 2o1 +

∑n
i=1 o

2
i

1− 2o2 +
∑n

i=1 o
2
i

, (99)

EP (w) =
1− o1

1− o2
=
ō1

ō2
. (100)

6. CONCLUSIONS

The article presents a method of using Shannon entropy for under-defined
or over-defined information with a certain degree of imprecision. For this pur-
pose, a two-step normalization procedure is proposed: a translation and a
homothetic one. After the presentation, the procedure is used for calculat-
ing Shannon’s entropy in the case of particular representations of information
such as neutrosophic information, bifuzzy information, intuitionistic fuzzy in-
formation, imprecise fuzzy information and fuzzy partitions. In the case of
neutrosophic information, two variants are possible: the first is the trivalent
variant in which the certainty has three prototypes: true, neutral and false;
the second is the bivalent variant in which the certainty has two prototypes:
true and false. The article mentions that the presented method of normal-
ization can be used for other formulas such as Onicescu information energy,
Tsallis entropy or Renyi entropy.
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Abstract In this study, we define the Jacobsthal sequences over arbitrary rings with
identity. Also, the terms of these sequences are derivated by the matrix. The
generating function and Binet formula given n-th general term of these se-
quences are found by using recurrence relation of the new defined Jacobsthal
sequences in rings. Finally, we obtain the some properties of terms of Jacob-
sthal sequences in rings.
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1. INTRODUCTION

The Jacobsthal sequence {jn} defined by

jn+2 = jn+1 + 2jn , n ≥ 0

with initial j0 = 0 and j1 = 1. Horadam in [2], exhibited a plethora of identities
for the second order Jacobsthal sequences and then went on to explore their
relationships and those of a variety of associated and representative sequences.
Most of the studies on recurrence sequences have been considered over groups
and but there are very little studies on rings ([6], [7], [3]). The Jacobsthal
sequences in rings have never been studied. DeCarli [3] gave a generalized
Fibonacci sequence over an arbitrary ring in 1970. Let R be a ring with
identity 1. The sequences {Sn} of elements of R, recursively defined by

Sn+2 = A1Sn+1 +A0Sn for n ≥ 0, 1, 2, ... (1)

where S0, S1, A0 and A1 are abritrary elements of R [3]. Special cases of
Fibonacci sequence over an arbitrary ring have been considered by Buschman
[8], Horadam [1] and Vorobyov [4] where this ring was taken to be the set
of integers. Wyler [5] also worked with such a sequence over a particular
commutative ring with identity. Then, Tasyurdu and Gultekin obtained the
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period of generalized Fibonacci sequence in finite rings with identity and fields
of order p2 by using equality recursively defined by Fn+2 = A1Fn+1 + A0Fn
for n ≥ 0, where F0 = 0 (zero of the ring), F1 = 1 (identity of the ring) and
A0, A1 are generator elements of finite rings with identity and fields of order
p2 ([9], [10]). Also, Tasyurdu and Dilmen obtained the period of generalized
Fibonacci sequence was defined over an arbitrary ring and the terms of this
sequence are derivated by determinant of Tridiagonal matrix [11].

2. MAIN RESULTS

We present the following the definition which is a special case of equation
(1), denoted by {Jn}.
Definition 2.1. The Jacobsthal sequences {Jn} in rings with identity are
defined by recurrence relation

Jn+2 = BJn+1 + 2AJn , n ≥ 0 (2)

where J0 = 0 (zero of a ring), J1 = 1 (identity of a ring) and A,B are arbitrary
elements of the ring, Jn is n-th term of {Jn}.

From Definition 2.1, note that it can be considered A1 = B and A0 = 2A
where A0, A1, A and B are abritrary elements of the ring. By using Definition
2.1, we can write a few terms of sequences {Jn} as follows

J0 = 0,

J1 = 1,

J2 = B(1) + 2A (0) = B,

J3 = B2 + 2A (1) = B2 + 2A,

J4 = B3 + 2BA+ 2AB = B3 + 4AB,

J5 = B4 + 6AB2 + 4A2,
...

The following theorem expresses matrix representation of the terms of the
Jacobsthal sequences {Jn} in rings.

Theorem 2.1. The Jacobsthal sequences {Jn} in rings are generated by a

matrix M =

(
B 1
2A 0

)
, then

Mn =

(
Jn+1 Jn
2AJn 2AJn−1

)
(3)

where n ε Z+.
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Proof. We will use the induction method on n. If n = 1, then

M =

(
J2 J1

2AJ1 2AJ0

)
=

(
B 1
2A 0

)
.

So the proof is complete for n = 1. Let the equation (3) be hold for n = k;
then we will show that the equation holds for n = k + 1. For J0 = 0, J1 = 1
and J2 = B, by our assumption

MkM =

(
Jk+1 Jk
2AJk 2AJk−1

)(
J2 J1

2AJ1 2AJ0

)
=

(
Jk+1J2 + Jk2AJ1 Jk+1J1 + Jk2AJ0

2AJkJ2 + 4A2Jk−1J1 2AJkJ1 + 4A2Jk−1J0

)
=

(
BJk+1 + 2AJk (1) Jk+1 (1) + Jk2A (0)

2A(BJk + 2AJk−1 (1)) 2AJk (1) + 4A2Jk−1 (0)

)
=

(
Jk+2 Jk+1

2AJk+1 2AJk

)
= Mk+1

which is as desired.

Example 2.1. From Theorem 2.1, we can obtain

M1 =

(
B 1
2A 0

)
=

(
J2 J1

2AJ1 2AJ0

)
M2 =

(
B2 + 2A B

2AB 2A

)
=

(
J3 J2

2AJ2 2AJ1

)
M3 =

(
B3 + 4AB B2 + 2A

2AB2 + 4A2 2AB

)
=

(
J4 J3

2AJ3 2AJ2

)
...

From Theorem 2.1, we obtain that pairs of successive term of the se-
quence {Jn} = {..., Jn, Jn+1, Jn+2, ...} can be considered pairs as 2-vectors,

e.g. (Jn+1, Jn)T . That is,

(B, 2A)

(
Jn+1

Jn

)
= BJn+1 + 2AJn

where A,B are arbitrary elements of the ring.
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2.1. THE GENERATING FUNCTION FOR
JACOBSTHAL SEQUENCES {Jn}

Now, we find the generating function for the Jacobsthal sequences {Jn} in
rings. We know that the power series of the ordinary generating function for
〈J0, J1, J2, J3, J4, . . .〉 are follows

G(X) = J0 + J1x+ J2x
2 + J3x

3 + . . . =
∞∑
n=0

Jnx
n. (4)

Theorem 2.2. The generating function G(x) of the Jacobsthal sequences {Jn}
in rings is as shown

G(X) =
x

1−Bx− 2Ax2
(5)

where A,B are arbitrary elements of the ring.

Proof. From equation (4), it can be obtained that

G(X) =
∞∑
n=0

Jnx
n

= 0 + x+
∞∑
n=2

Jnx
n

= x+

∞∑
n=2

(BJn−1 + 2AJn−2)xn

= x+ xB
∞∑
n=0

Jnx
n + x22A

∞∑
n=0

Jnx
n

= x+ xBG(x) + x22AG(x)

where J0 = 0, J1 = 1. Then it can be shown that G(X) =
x

1−Bx− 2Ax2
.

The terms of the Jacobsthal sequences {Jn} in rings can be obtained by
using the Definition 2.1. The Binet formula known as the general formula
can be used instead of this definition. The Binet formula allows us to easily
find any of terms of the Jacobsthal sequences {Jn} in rings without having to
know all the terms before it. That is, Binet formula give us to find the n-th
Jacobsthal number in rings without creating the Jacobsthal sequences {Jn} in
rings. Now, we produce the Binet formula for the Jacobsthal sequences {Jn}
in rings.
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2.2. THE BINET FORMULA OF JACOBSTHAL
SEQUENCES {Jn}

Let α and β be roots of the characteristic equation of the recurence relation
equation (2) and let the eigenvector X corresponding to the eigenvalues λ is
X = (x1, x2),

|λI −M | =
∣∣∣∣ λ−B −1
−2A λ

∣∣∣∣ = (λ−B)λ− 2A = λ2 −Bλ− 2A.

Then using the quadratic formula and form λ2 −Bλ− 2A = 0, we obtain

α =
B +

√
B2 + 8A

2
and β =

B −
√
B2 + 8A

2

where λ = B±
√
B2+8A
2 . Note that this roots satisfy the following relations:

α2 = αB + 2A β2 = βB + 2A

α− β =
√
B2 + 8A α+ β = B

1

α
=

2

B +
√
B2 + 8A

1

β
=

2

B −
√
B2 + 8A

αβ = −2A

Let us find the eigenvectors. Firstly, for eigenvalue α

(αI −M)X = 0⇒
(
α−B −1
−2A α

)(
x1

x2

)
= 0

so, the using α2 = αB + 2A

αI −M =

(
α−B −1
−2A α

)
r2 → r2 + αr1

(
α−B −1

α2 − (αB + 2A) 0

)
→

(
α−B −1
α2 − α2 0

)
→
(
α−B −1

0 0

)
.

The eigenvector of the eigenvalue α is (1, α−B)T . As similary, the eigenvector
of the eigenvalue β is (1, β−B)T . Then we can find the diagonalization of M .
So, we put these eigenvectors, into change of basis matrix

N =

(
1 1

α−B β −B

)
and N−1 =

1

−
√
B2 + 8A

(
β −B −1
B − α 1

)
M = NM̃N−1. (6)
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From equation (6), we get

M̃ =

 (
βα−α2

−
√
B2+8A

)
0

0
(

β2−αβ
−
√
B2+8A

) 
where M̃ is diagonalization of M . Now we can easily compute powers of M
from equation (6)

Mn =
[
NM̃N−1

]n
= N(M̃)nN−1

=
1

−
√
B2 + 8A

(
1 1

α−B β −B

)
(

βα−α2

−
√
B2+8A

)n
0

0

(
β2−αβ
−
√
B2+8A

)n
( β −B −1

B − α 1

)

We know that
(Jn+1

2AJn

)
= Mn

(
1
0

)
. Then(

Jn+1

2AJn

)
= Mn

(
1

0

)
(
Jn+1

2AJn

)
=

1

−
√
B2 + 8A

(
1 1

α−B β −B

)
(

βα−α2

−
√
B2+8A

)n
0

0

(
β2−αβ
−
√
B2+8A

)n
( β −B −1

B − α 1

)(
1

0

)

(
Jn+1

2AJn

)
=

1

−
√
B2 + 8A

(
1 1

α−B β −B

)
(

βα−α2

−
√
B2+8A

)n
0

0

(
β2−αβ
−
√
B2+8A

)n
( β −B

B − α

)

(
Jn+1

2AJn

)
=

1

−
√
B2 + 8A

(
1 1

α−B β −B

)
(

βα−α2

−
√
B2+8A

)n
(β −B)(

β2−αβ
−
√
B2+8A

)n
(B − α)



2AJn =
1

−
√
B2 + 8A

(β − α)n(
−
√
B2 + 8A

)n (β −B)(α−B)(αn − βn)

2AJn =
1(

−
√
B2 + 8A

)n+1 (β − α)n(β −B)(α−B)(αn − βn)

2AJn =
(αn − βn)(

−
√
B2 + 8A

)n+1

(
−
√
B2 + 8A

)n(B −√B2 + 8A

2
−B

)(
B +

√
B2 + 8A

2
−B

)
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2AJn =
1(

−
√
B2 + 8A

)n+1

(
−
√
B2 + 8A

)n
(−2A)(αn − βn)

2AJn =
1

−
√
B2 + 8A

(−2A)(αn − βn)

Jn =
1

α− β
αn − βn

Jn =
αn − βn

α− β
.

That is,

Jn =
1√

B2 + 8A
(αn − βn)

jn =
1√

B2 + 8A

[(
B +

√
B2 + 8A

2

)n
−

(
B −

√
B2 + 8A

2

)n]
and so we are done.

Example 2.2. From Definition 2.1, we know the Jacobsthal sequences {Jn}
in rings {

0, 1, B, B2 + 2A, B3 + 4AB,B4 + 6AB2 + 4A2, ...
}

where n ≥ 0 and by using Binet formula of {Jn}, we obtain

J0 =
α0 − β0

α− β
= 0

J1 =
α− β
α− β

= 1

J2 =
α2 − β2

α− β
= α+ β = B

J3 =
α3 − β3

α− β
= α2 + αβ + β2 = B(α+ β) + 2A+ (−2A) + 2A = B2 + 2A

...

2.2.1 The Binet Formula of {Jn} with the Inductive Method.

We will use the induction method on n to prove Jn = αn−βn
α−β . If n = 0, then

1√
B2 + 8A

(α0 − β0) = 0 = J0
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and n = 1,
1√

B2 + 8A
(α1 − β1) = 1 = J1

Let us suppose that the Binet formula holds for arbitrary n = k. Then we
will show that the Binet formula holds for n = k + 1. By our assumption, we
obtain

Jk+1 = BJk + 2AJk−1

= B

(
αk − βk

α− β

)
+ 2A

(
αk−1 − βk−1

α− β

)
=

1

α− β
(αk−1α2 − βk−1β2)

=
(αk+1 − βk+1)

α− β

and so the proof is completed.

2.2.2 The Binet Formula of {Jn} with the Generating Function
Method. We will find the Binet formula of the Jacobsthal sequences {Jn}
in rings by using generating function. We know that

2Ax2 +Bx− 1 = 2A
(
x+

α

2A

)(
x+

β

2A

)
4A2x2 + 2ABx− 2A = 4A2

(
x+

α

2A

)(
x+

β

2A

)
.

Thus, from equation (5) we obtain

G (x) =
x

1−Bx− 2Ax2

G (x) =
−x

2Ax2 +Bx− 1

G (x) =
−2Ax

4A2x2 + 2ABx− 2A

First, we factor the denominator:

4A2x2 + 2ABx− 2A = 2A
(
x+

α

2A

)
2A

(
x+

β

2A

)
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where α = B+
√
B2+8A
2 and β = B−

√
B2+8A
2 . Next, we find U and V which

satisfy:
−2Ax

4A2x2 + 2ABx− 2A
=

U

2A
(
x+ α

2A

) +
V

2A
(
x+ β

2A

) .
We do this by plugging in various values of x to generate linear equations in
U and V . We can then find U and V by solving a linear system.

This gives U = −α
α−β and V = β

α−β . By substituting into the equation above

gives the partial fractions expansion of 2AG (x) :

2AG (x) =

−α
α−β(

x+ α
2A

) +

β
α−β(

x+ β
2A

)
=

−α
α− β

(
1

x+ α
2A

)
+

β

α− β

(
1

x+ β
2A

)

=
−α
α− β

(
1

x− 1
β

)
+

β

α− β

(
1

x− 1
α

)

=
−α
α− β

1
1
β

1

βx− 1
+

β

α− β
1
1
α

1

αx− 1

=
−αβ
α− β

( ∞∑
n=0

αnxn −
∞∑
n=0

βnxn

)

G (x) =
∞∑
n=0

1

α− β
(αn − βn)xn

where αβ = −2A.
By equating coefficients, we again conlude that

Jn =
1

α− β
αn−βn =

1√
B2 + 8A

[(
B +

√
B2 + 8A

2

)n
−

(
B −

√
B2 + 8A

2

)n]
and so proof is completed.

2.3. SOME PROPERTIES OF TERMS OF
JACOBSTHAL SEQUENCES {Jn}

Theorem 2.3. If Jn+2 = BJn+1 + 2AJn then Jn+2 = Jn+1B + Jn2A.

Proof. We can complete the proof by induction method on n. For n = 0, if
J2 = BJ1 + 2AJ0 then
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J2 = BJ1 + 2AJ0 = B (1) + 2A (0) = (1)B + (0) 2A = J1B + J02A.

Let is assume that is right for n = k. That is, if Jk+2 = BJk+1 + 2AJk
then Jk+2 = Jk+1B + Jk2A. Now, we will obtain that is right for n = k + 1.
For n = k + 1, by using our assumption and the fact that a ring satisfies the
associative law for multiplication, if Jk+3 = BJk+2 + 2AJk+1 then

Jk+3 = BJk+2 + 2AJk+1

= B(BJk+1 + 2AJk) + 2A(BJk + 2AJk−1)

= B(Jk+1B + Jk2A) + 2A(JkB + Jk−12A)

= B (Jk+1B) + 2A(JkB) +B(Jk2A) + 2A (Jk−12A)

= (BJk+1)B + (2AJk)B + (BJk)2A+ (2AJk−1) 2A

= (BJk+1 + 2AJk)B + (BJk + 2AJk−1)2A

= Jk+2B + Jk+12A.

Thus, the proof is completed.

Theorem 2.4. For n ≥ 1,
a) Jn+1Jn−1 − J2

n = Jn−12AJn−1 − Jn2AJn−2

b) Jn−1Jn+1 − J2
n = Jn−12AJn−1 − Jn−22AJn

Proof. a) From Theorem 2.3, if Jn+2 = BJn+1 + 2AJn then Jn+2 = Jn+1B +
Jn2A. Then

Jn+1Jn−1 − J2
n = (JnB + Jn−12A)Jn−1 − Jn(BJn−1 + 2AJn−2)

= JnBJn−1 + Jn−12AJn−1 − JnBJn−1 − Jn2AJn−2

= Jn−12AJn−1 − Jn2AJn−2.

b) From Theorem 2.3, if Jn+2 = BJn+1 + 2AJn then Jn+2 = Jn+1B + Jn2A.
Then

Jn−1Jn+1 − J2
n = Jn−1(BJn + 2AJn−1)− (Jn−1B + Jn−22A)Jn

= Jn−1BJn + Jn−12AJn−1 − Jn−1BJn − Jn−22AJn

= Jn−12AJn−1 − Jn−22AJn.

So the proof is completed.

From Definition 2.1 the Jacobsthal sequences {Jn} in rings are{
0, 1, B, B2 + 2A, B3 + 4AB,B4 + 6AB2 + 4A2, ...

}



On the Jacobsthal Sequences and Their Applications in Rings with Identity 197

for n ≥ 0. For the application of the Theorem 2.4 we can write the following
example by using these sequences.

Example 2.3. a) For n = 3, if Jn+1Jn−1 − J2
n = Jn−12AJn−1 − Jn2AJn−2

then

J4J2 − J2
3 = J22AJ2 − J32AJ1(

B3 + 4AB
)
B − (B2 + 2A)2 = (B)2A(B)− (B2 + 2A)(2A) (1)

−4A2 = −4A2.

b) For n = 4, if Jn−1Jn+1 − J2
n = Jn−12AJn−1 − Jn−22AJn then

J3J5 − J2
4 = J32AJ3 − J22AJ4(

B2 + 2A
) (
B4 + 6AB2 + 4A2

)
−
(
B3 + 4AB

)2
=

(
B2 + 2A

)
(2A)

(
B2 + 2A

)
− (B) 2A

(
B3 + 4AB

)
8A3 = 8A3.

So, Theorem 2.4 is provided.

There is a relation between the {Sn} sequences from equation (1) and the
{Jn} sequences from equation (2). We can give the following theorem and
corollary for this relation.

Theorem 2.5. For n ≥ 1, r ≥ 0,

Sn+r = Jr2ASn−1 + Jr+1Sn.

Proof. We can complete the proof by induction over r and by using Definition
2.1. For r = 0

Sn+0 = Sn

= (0) 2ASn−1 + (1)Sn

= J02ASn−1 + J1Sn.

That is, Sn = J02ASn−1 + J1Sn . For r = 1

Sn+1 = BSn + 2ASn−1

= (1) 2ASn−1 +B (1)Sn + 2A (0)Sn

= J12ASn−1 + (BJ1 + 2AJ0)Sn

= J12ASn−1 + J2Sn
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where J0 = 0, J1 = 1. That is, Sn+1 = J12ASn−1 + J2Sn. Let is assume that
it is true, for for r = k, that

Sn+k = Jk2ASn−1 + Jk+1Sn. (7)

From our assumption, we know

Sn+(k−1) = Jk−12ASn−1 + JkSn. (8)

Now, we will shown

Sn+k+1 = Jk+12ASn−1 + Jk+2Sn

for r = k + 1. From equations (7) and (8), we can write

BSn+k + 2ASn+(k−1) = (BJk + 2AJk−1)2ASn−1 + (BJk+1 + 2AJk)Sn

= Jk+12ASn−1 + Jk+2Sn

where A1 = B and A0 = 2A. Thus,

Sn+k+1 = Jk+12ASn−1 + Jk+2Sn

so, the proof is completed.

Corollary 2.1. For n ≥ 1,

Sn = JnS1 + Jn−12AS0.

Proof. Interchange r and n, replace n by n− 1 and set r = 1 in Theorem 2.5,
we obtain

Sn+r = Jr2ASn−1 + Jr+1Sn

then

Sr+n = S1+(n−1)

= Jn−12AS1−1 + J(n−1)+1S1

= Jn−12AS0 + JnS1

That is, Sn = JnS1 + Jn−12AS0 and the proof is completed.

For the Jacobsthal sequences {Jn} in rings, Theorem 2.5 becomes

Jn+r = Jr2AJn−1 + Jr+1Jn n ≥ 1 (9)

If we replace n by n+ 1 and r by n in equation (9), then we have

J2
n+1 + Jn2AJn = J2n+1.
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Theorem 2.6. For n ≥ 1, r ≥ 1

JnJn+r − Jn+rJn = JnJr2AJn−1 − Jn−12AJrJn.

Proof. If we replace n by r + 1 and r by n− 1 in equation (9), we have

Jn+r = J(r+1)+(n−1)

= Jn−12AJr+1−1 + Jn−1+1Jr+1

= Jn−12AJr + JnJr+1.

That is,
Jn+r = Jn−12AJr + JnJr+1. (10)

From equations (9) and (10) and the fact that a ring satisfies the associative
law for multiplication, we have

Jn(Jr+1Jn) = (JnJr+1)Jn

Jn(Jr+1Jn + Jr2AJn−1 − Jr2AJn−1) = (JnJr+1 + Jn−12AJr − Jn−12AJr)Jn

Jn

Jr2AJn−1 + Jr+1Jn︸ ︷︷ ︸
Jn+r

− Jr2AJn−1

 =

JnJr+1 + Jn−12AJr︸ ︷︷ ︸
Jn+r

− Jn−12AJr

 Jn

Jn(Jn+r − Jr2AJn−1) = (Jn+r − Jn−12AJr)Jn

JnJn+r − JnJr2AJn−1 = Jn+rJn − Jn−12AJrJn

JnJn+r − Jn+rJn = JnJr2AJn−1 − Jn−12AJrJn

so, the proof is completed.

Theorem 2.7. For n ≥ 3,

JnJn+1 − Jn−1Jn+2 = Jn−22AJn+1 − Jn−12AJn.

Proof. From Definition 2.1, we have

JnJn+1 − Jn−1Jn+2 = (Jn−1B + Jn−22A)Jn+1 − Jn−1(BJn+1 + 2AJn)

= Jn−1BJn+1 + Jn−22AJn+1 − Jn−1BJn+1 − Jn−12AJn

= Jn−22AJn+1 − Jn−12AJn.

That is,
JnJn+1 − Jn−1Jn+2 = Jn−22AJn+1 − Jn−12AJn.

Thus, the proof is completed.
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3. CONCLUSIONS

Most of the studies on recurrence sequences in the literature were on groups.
However, only Fibonacci sequences were studied on the rings and the Jacob-
sthal sequences in rings have never been studied. In this study, we defined
the Jacobsthal sequences {Jn} in arbitrary rings with identity and gave some
properties of these new sequences. Also, it was obtained the matrix derivated
the terms of Jacobsthal sequences {Jn} in rings and generating function for
{Jn} . It was introduced the Binet formula known as the general formula and
given us to find the n-th Jacobsthal number in rings without creating the
Jacobsthal sequence {Jn} in rings.

This study fills the gap in the literature by providing recurrence sequences
on rings using definitions of the Jacobsthal sequences {Jn} in rings given for
the first time.
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