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The behaviour of the inverse operations in the class of
preradicals in special cases

Ion Jardan

Abstract. In [4], [5], [6] four new operations are introduced and studied in the
class of preradicals PR of the category 𝑅-Mod of left 𝑅-modules, and is shown
the behaviour of these operations in the case of some special types of preradicals
as prime, coprime, ∧-prime, ∨-coprime, irreducible and coirreducible. In this
work we will present the behaviour of inverse operations in the case of semiprime
and semicoprime preradicals.
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Comportamentul operaţiilor inverse din clasa preradicalilor în
cazuri speciale

Rezumat. În [4], [5], [6] sunt introduse şi studiate patru operaţii noi în clasa
preradicalilor PR a categoriei 𝑅-modulelor stângi 𝑅-Mod, şi este arătat com-
portamentul acestor operaţii în cazul unor preradicali de tipuri speciale, aşa ca
primi, coprimi, ∧-primi, ∨-coprimi, ireductibili şi coireductibili. În această
lucrare vom prezenta comportamentul operaţiilor inverse în cazul preradicalilor
semiprimi şi semicoprimi.
Cuvinte cheie: Inel, modul, categorie, latice, (pre)radical.

1. Introduction and preliminary facts

This work is devoted to the theory of radicals of modules ([1], [2], [9], [10]) and
contains some investigations of new four operations defined and studied in [4 - 6] in the
class of preradicals of a module category.

Let 𝑅 be a ring with unity and 𝑅-Mod be the category of unitary left 𝑅-modules.
We remind that a preradical 𝑟 of 𝑅-Mod is a subfunctor of identity functor of 𝑅-Mod,
i.e. 𝑟 associates to every module 𝑀 ∈ 𝑅-Mod a submodule 𝑟 (𝑀) ⊆ 𝑀 such that
𝑓 (𝑟 (𝑀)) ⊆ 𝑟 (𝑀 ′) for every 𝑅-morphism 𝑓 : 𝑀 → 𝑀 ′.
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We denote by PR the class of all preradicals of the category 𝑅-Mod. In this class four
operation are defined [1], [2], [9]:

1) the meet ∧
𝛼∈𝔄

𝑟𝛼 of a family of preradicals {𝑟𝛼}𝛼∈𝔄 :(
∧

𝛼∈𝔄
𝑟𝛼

)
(𝑀)

𝑑𝑒 𝑓
=

⋂
𝛼∈𝔄

𝑟𝛼 (𝑀), 𝑀 ∈ 𝑅-Mod;

2) the join ∨
𝛼∈𝔄

𝑟𝛼 of a family of preradicals {𝑟𝛼}𝛼∈𝔄 :(
∨

𝛼∈𝔄
𝑟𝛼

)
(𝑀)

𝑑𝑒 𝑓
=

∑
𝛼∈𝔄

𝑟𝛼 (𝑀), 𝑀 ∈ 𝑅-Mod;

3) the product 𝑟 · 𝑠 of preradicals 𝑟, 𝑠 ∈ PR:
(𝑟 · 𝑠) (𝑀)

𝑑𝑒 𝑓
= 𝑟 (𝑠 (𝑀)), 𝑀 ∈ 𝑅-Mod ;

4) the coproduct 𝑟 # 𝑠 of preradicals 𝑟, 𝑠 ∈ PR:
[(𝑟 # 𝑠) (𝑀)]/𝑠 (𝑀)

𝑑𝑒 𝑓
= 𝑟 (𝑀/𝑠 (𝑀)), 𝑀 ∈ 𝑅-Mod.

In the class PR the partial order relation ” ≤ ” is defined by the rule:

𝑟1 ≤ 𝑟2
𝑑𝑒 𝑓
⇔ 𝑟1 (𝑀) ⊆ 𝑟2 (𝑀) for every 𝑀 ∈ 𝑅-Mod.

The class PR is a large complete lattice with respect to the operations of meet and
join.

We remark that in the book [1], [2], [9] the coproduct is denoted by (𝑟 : 𝑠) and is defined
by the rule [(𝑟 : 𝑠) (𝑀)]/𝑟 (𝑀) = 𝑠 (𝑀/𝑟 (𝑀)), so in our notations (𝑟 # 𝑠) = (𝑠 : 𝑟).

The following properties of distributivity hold ([1], [2], [9]):
(1) (∧ 𝑟𝛼) · 𝑠 = ∧ (𝑟𝛼 · 𝑠); (2) (∨ 𝑟𝛼) · 𝑠 = ∨ (𝑟𝛼 · 𝑠);
(3) (∧ 𝑟𝛼) # 𝑠 = ∧ (𝑟𝛼 # 𝑠); (4) (∨ 𝑟𝛼) # 𝑠 = ∨ (𝑟𝛼 # 𝑠)

for every family {𝑟𝛼}𝛼∈𝔄 ⊆ PR and 𝑠 ∈ PR.
Using these relations in [4], [5], [6] four new operations are introduced and studied in

the class of preradicals PR in modules, namely, the inverse operations of the product and
of the coproduct with respect to meet and to join. They are defined as follows:

(1) the left quotient with respect to join 𝑟 ∨/· 𝑠 = ∨ { 𝑟𝛼 ∈ PR | 𝑟𝛼 · 𝑠 ≤ 𝑟}, which
exists for any preradicals 𝑟, 𝑠 ∈ PR;

(2) the left coquotient with respect to meet 𝑟 ∧/# 𝑠 = ∧ { 𝑟𝛼 ∈ PR | 𝑟𝛼 # 𝑠 ≥ 𝑟}, which
exists for any preradicals 𝑟, 𝑠 ∈ PR;

(3) the left quotient with respect to meet 𝑟 ∧/· 𝑠 = ∧ { 𝑟𝛼 ∈ PR | 𝑟𝛼 · 𝑠 ≥ 𝑟}, which
exists for any preradicals 𝑟, 𝑠 ∈ PR such that 𝑟 ≤ 𝑠;

(4) the left coquotient with respect to join 𝑟 ∨/# 𝑠 = ∨ { 𝑟𝛼 ∈ PR | 𝑟𝛼 # 𝑠 ≤ 𝑟}, which
exists for any preradicals 𝑟, 𝑠 ∈ PR such that 𝑟 ≥ 𝑠.

The similar questions are discussed in [3; 7; 8].
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For each of defined operation we indicate a particular case, which coincides with a
well known operator in PR. Moreover, some properties of these operators are shown [4 -
6; 10 - 14].

For any preradical 𝑟 ∈ PR, these particular cases are:

(1) 0 ∨/· 𝑟 = ∨ { 𝑟𝛼 ∈ PR | 𝑟𝛼 · 𝑟 = 0} = 𝑎(𝑟) is the annihilator of 𝑟;
(2) 1 ∧/# 𝑟 = ∧ { 𝑟𝛼 ∈ PR | 𝑟𝛼 # 𝑟 = 1} = 𝑡 (𝑟) is the totalizer of 𝑟;
(3) 𝑟 ∧/· 𝑟 = ∧ { 𝑟𝛼 ∈ PR | 𝑟𝛼 · 𝑟 = 𝑟} = 𝑒(𝑟) is the equalizer of 𝑟;
(4) 𝑟 ∨/# 𝑟 = ∨ { 𝑟𝛼 ∈ PR | 𝑟𝛼 # 𝑟 = 𝑟} = 𝑐(𝑟) is the co-equalizer of 𝑟 .

These operators possess the following properties for any 𝑟 ∈ PR ([10]):

(1) 𝑎(𝑟) is a radical;
(2) 𝑡 (𝑟) is a Jansian pretorsion;
(3) 𝑒(𝑟) is an idempotent preradical;
(4) 𝑐(𝑟) is a radical.

Now we remind the some types of preradicals ([11 - 14]). A preradical 𝑟 ∈ PR is
called:

– prime, if 𝑟 ≠ 1 and for each 𝑡1, 𝑡2 ∈ PR, 𝑡1 · 𝑡2 ≤ 𝑟 implies 𝑡1 ≤ 𝑟 or 𝑡2 ≤ 𝑟

[11];
– coprime, if 𝑟 ≠ 0 and for each 𝑡1, 𝑡2 ∈ PR, 𝑡1 # 𝑡2 ≥ 𝑟 implies 𝑡1 ≥ 𝑟 or 𝑡2 ≥ 𝑟

[12];
– semiprime, if 𝑟 ≠ 1 and for each 𝑡 ∈ PR, 𝑡 · 𝑡 ≤ 𝑟 implies 𝑡 ≤ 𝑟 [13];
– semicoprime, if 𝑟 ≠ 0 and for each 𝑡 ∈ PR, 𝑡 # 𝑡 ≥ 𝑟 implies 𝑡 ≥ 𝑟 [14];
– ∧-prime, if for each 𝑡1, 𝑡2 ∈ PR, 𝑡1 ∧ 𝑡2 ≤ 𝑟 implies 𝑡1 ≤ 𝑟 or 𝑡2 ≤ 𝑟 [11];
– ∨-coprime, if for each 𝑡1, 𝑡2 ∈ PR, 𝑡1 ∨ 𝑡2 ≥ 𝑟 implies 𝑡1 ≥ 𝑟 or 𝑡2 ≥ 𝑟 [12];
– irreducible, if for each 𝑡1, 𝑡2 ∈ PR, 𝑡1 ∧ 𝑡2 = 𝑟 implies 𝑡1 = 𝑟 or 𝑡2 = 𝑟 [11];
– coirreducible, if for each 𝑡1, 𝑡2 ∈ PR, 𝑡1 ∨ 𝑡2 = 𝑟 implies 𝑡1 = 𝑟 or 𝑡2 = 𝑟 [12].

The operations of meet and join are commutative and associative, while the oper-
ations of product and coproduct are associative. For every 𝑟, 𝑠 ∈ PR by means of
these operations four preradicals are obtained which are arranged in the following order:
𝑟 · 𝑠 ≤ 𝑟 ∧ 𝑠 ≤ 𝑟 ∨ 𝑠 ≤ 𝑟 # 𝑠.

During this work we will use the following facts and notions from general theory of
preradicals (see [1], [2], [4]-[5], [9]).

Lemma 1.1. (Monotony of the product) For any 𝑠1, 𝑠2 ∈ PR, 𝑠1 ≤ 𝑠2 implies that
𝑟 · 𝑠1 ≤ 𝑟 · 𝑠2 and 𝑠1 · 𝑟 ≤ 𝑠2 · 𝑟 for every 𝑟 ∈ PR.
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Lemma 1.2. (Monotony of the coproduct) For any 𝑠1, 𝑠2 ∈ PR, 𝑠1 ≤ 𝑠2 implies that
𝑟 # 𝑠1 ≤ 𝑟 # 𝑠2 and 𝑠1 # 𝑟 ≤ 𝑠2 # 𝑟 for every 𝑟 ∈ PR.

Lemma 1.3. For every 𝑟, 𝑠, 𝑡 ∈ PR we have:

(1) (𝑟 · 𝑠) # 𝑡 ≥ (𝑟 # 𝑡) · (𝑠 # 𝑡);
(2) (𝑟 # 𝑠) · 𝑡 ≤ (𝑟 · 𝑡) # (𝑠 · 𝑡).

Proposition 1.4. Let 𝑟, 𝑠, 𝑡 ∈ PR. Then

(1) 𝑟 ≥ 𝑡 · 𝑠 ⇔ 𝑟 ∨/· 𝑠 ≥ 𝑡;
(2) 𝑟 ≤ 𝑡 # 𝑠 ⇔ 𝑟 ∧/# 𝑠 ≤ 𝑡;
(3) 𝑟 ≤ 𝑡 · 𝑠 ⇔ 𝑟 ∧/· 𝑠 ≤ 𝑡, where 𝑟 ≤ 𝑠;
(4) 𝑟 ≥ 𝑡 # 𝑠 ⇔ 𝑟 ∨/# 𝑠 ≥ 𝑡, where 𝑟 ≥ 𝑠.

The statements of Proposition 1.4 can be considered as another way of defining the
inverse operations.

2. The behaviour of the inverse operations for some special types of
preradicals

In [4], [5], [6] are shown the behaviour of the inverse operations in PR in the case
of such types of preradicals as prime, coprime, ∧-prime, ∨-coprime, irreducible and
coirreducible. In continuation we will indicate these properties.

Proposition 2.1. Let 𝑟, 𝑠 ∈ PR . The following statemens are true:
(1) The preradical 𝑟 is prime if and only if for any preradical 𝑠 we have 𝑟 ∨/· 𝑠 = 1

or 𝑟 ∨/· 𝑠 = 𝑟 .
(2) If 𝑟 is ∧-prime, then 𝑟 ∨/· 𝑠 is a ∧-prime preradical.
(3) If 𝑟 = 𝑡 · 𝑠 for some preradical 𝑡 ∈ PR and 𝑟 is irreducible, then the preradical

𝑟 ∨/· 𝑠 is irreducible.

Proposition 2.2. For every 𝑟, 𝑠 ∈ PR we have:
(1) The preradical 𝑟 is coprime if and only if for any preradical 𝑠 we have 𝑟 ∧/# 𝑠 = 0

or 𝑟 ∧/# 𝑠 = 𝑟 .
(2) If 𝑟 is ∨-coprime, then 𝑟 ∧/# 𝑠 is a ∨-coprime preradical.
(3) If 𝑟 = 𝑡 # 𝑠 for some preradical 𝑡 ∈ PR and 𝑟 is coirreducible, then the preradical

𝑟 ∧/# 𝑠 is coirreducible.

Proposition 2.3. Let 𝑟 ∈ PR. The following statements hold:
(1) If 𝑟 is coprime, then 𝑟 ∧/· 𝑠 is a coprime preradical for any preradical 𝑠 ≥ 𝑟 .
(2) If 𝑟 is ∨-coprime, then 𝑟 ∧/· 𝑠 is a ∨-coprime preradical for any preradical 𝑠 ≥ 𝑟 .
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(3) If 𝑟 = 𝑡 · 𝑠 for some preradical 𝑡 ∈ PR and 𝑟 is coirreducible, then the preradical
𝑟 ∧/· 𝑠 is coirreducible for any preradical 𝑠 ∈ PR.

Moreover, from Propositon 2.3 ([12]):
(1) if the preradical 𝑟 is coprime, then its equalizer 𝑒(𝑟) is coprime;
(2) if the preradical 𝑟 is ∨-coprime, then its equalizer 𝑒(𝑟) is ∨-coprime;
(3) if the preradical 𝑟 is coirreducible, then its equalizer 𝑒(𝑟) is coirreducible.

Proposition 2.4. Let 𝑟 ∈ PR. The following facts are true:
(1) If 𝑟 is prime, then 𝑟 ∨/# 𝑠 is a prime preradical for any preradical 𝑠 ≤ 𝑟 .
(2) If 𝑟 is ∧-prime, then 𝑟 ∨/# 𝑠 is a ∧-prime preradical for any preradical 𝑠 ≤ 𝑟.
(3) If 𝑟 = 𝑡 # 𝑠 for some preradical 𝑡 ∈ PR and 𝑟 is irreducible, then the preradical

𝑟 ∨/# 𝑠 is irreducible for any preradical 𝑠 ∈ PR.

Moreover, from Propositon 2.4 ([11]):
(1) if the preradical 𝑟 is prime, then its co-equalizer 𝑐(𝑟) is prime;
(2) if the preradical 𝑟 is ∧-prime, then its co-equalizer 𝑐(𝑟) is ∧-prime;
(3) if the preradical 𝑟 is irreducible, then its co-equalizer 𝑐(𝑟) is irreducible.
Now we will show the behaviour of the inverse operations in the case of semiprime

and semicoprime preradicals.

Proposition 2.5. If the preradical 𝑟 is semiprime, then the left quotient 𝑟 ∨/· 𝑠 is a
semiprime preradical for every 𝑠 ∈ PR.

Proof. Suppose that 𝑟 ≠ 1 and 𝑡 · 𝑡 ≤ 𝑟 ∨/· 𝑠 for each 𝑡 ∈ PR. From the Proposition
1.4(1) we have 𝑟 ≥ (𝑡 · 𝑡) · 𝑠. Using the associativity of the product of preradicals we
obtain 𝑟 ≥ 𝑡 · (𝑡 · 𝑠). Since 𝑡 ≥ (𝑡 · 𝑠), from the monotony of product of preradicals it
follows that 𝑡 · (𝑡 · 𝑠) ≥ (𝑡 · 𝑠) · (𝑡 · 𝑠), i.e. 𝑟 ≥ (𝑡 · 𝑠) · (𝑡 · 𝑠). If 𝑟 is semiprime, then
𝑟 ≥ (𝑡 · 𝑠). From the Proposition 1.4(1) we obtain that 𝑟 ∨/· 𝑠 ≥ 𝑡.

So for each preradical 𝑡 ∈ PR with 𝑡 · 𝑡 ≤ 𝑟 ∨/· 𝑠 we have 𝑡 ≤ 𝑟 ∨/· 𝑠, which means that
the preradical 𝑟 ∨/· 𝑠 is semiprime. �

Proposition 2.6. If the preradical 𝑟 is semicoprime, then the left coquotient 𝑟 ∧/# 𝑠 is a
semicoprime preradical for every 𝑠 ∈ PR.

Proof. Assume that 𝑟 ≠ 0 and 𝑡 # 𝑡 ≥ 𝑟 ∧/# 𝑠 for each 𝑡 ∈ PR. Then from Proposition
1.4(2) we obtain 𝑟 ≤ (𝑡 # 𝑡) # 𝑠. Applying the associativity of coproduct of preradicals we
have 𝑟 ≤ 𝑡 # (𝑡 # 𝑠). Because 𝑡 ≤ 𝑡 # 𝑠, using the monotony of coproduct of preradicals we
obtain 𝑡 # (𝑡 # 𝑠) ≤ (𝑡 # 𝑠) # (𝑡 # 𝑠), therefore 𝑟 ≤ (𝑡 # 𝑠) # (𝑡 # 𝑠). If 𝑟 is semicoprime, then
𝑟 ≤ (𝑡 # 𝑠). From Proposition 1.4(2) we obtain that 𝑟 ∧/# 𝑠 ≤ 𝑡.
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So for each preradical 𝑡 ∈ PR with 𝑡 # 𝑡 ≥ 𝑟 ∧/# 𝑠 we have 𝑡 ≥ 𝑟 ∧/# 𝑠, which means that
the preradical 𝑟 ∧/# 𝑠 is semicoprime. �

Proposition 2.7. If 𝑟 is a semicoprime preradical, then the preradical 𝑟 ∧/· 𝑠 is
semicoprime for any preradical 𝑠 ≥ 𝑟.

Proof. The condition 𝑟 ≤ 𝑠 ensures the existence of the left quotient 𝑟 ∧/· 𝑠.
Let the preradical 𝑟 ≠ 0 be semicoprime and 𝑡 # 𝑡 ≥ 𝑟 ∧/· 𝑠 for each preradical

𝑡 ∈ PR. Using Proposition 1.4(3) we obtain 𝑟 ≤ (𝑡 # 𝑡) · 𝑠. From Lemma 1.3(2)
(𝑡 # 𝑡) · 𝑠 ≤ (𝑡 · 𝑠) # (𝑡 · 𝑠), therefore 𝑟 ≤ (𝑡 · 𝑠) # (𝑡 · 𝑠). Since 𝑟 is semicoprime, it follows
that 𝑟 ≤ 𝑡 · 𝑠. Applying Proposition 1.4(3) we obtain 𝑟 ∧/· 𝑠 ≤ 𝑡.

So for each 𝑡 ∈ PR with 𝑡 # 𝑡 ≥ 𝑟 ∧/· 𝑠 we have 𝑡 ≥ 𝑟 ∧/· 𝑠, which means that the
preradical 𝑟 ∧/· 𝑠 is semicoprime. �

Moreover, from Propositon 2.7 if the preradical 𝑟 is semicoprime, then its equalizer
𝑒(𝑟) is a semicoprime preradical ([14]).

Proposition 2.8. If 𝑟 is a semiprime preradical, then the preradical 𝑟 ∨/# 𝑠 is semiprime
for any preradical 𝑠 ≤ 𝑟 .

Proof. The condition 𝑟 ≥ 𝑠 ensures the existence of the left coquotient 𝑟 ∨/# 𝑠.
Let the preradical 𝑟 ≠ 1 be semiprime and 𝑡 · 𝑡 ≤ 𝑟 ∨/# 𝑠 for each preradical

𝑡 ∈ PR. From the Proposition 1.4(4) we have 𝑟 ≥ (𝑡 · 𝑡) # 𝑠. By Lemma 1.3(1) we have
(𝑡 · 𝑡) # 𝑠 ≥ (𝑡 # 𝑠) · (𝑡 # 𝑠), so 𝑟 ≥ (𝑡 # 𝑠) · (𝑡 # 𝑠). Since 𝑟 is semiprime, it follows that
𝑟 ≥ 𝑡 # 𝑠. Using Proposition 1.4(4) we obtain 𝑟 ∨/# 𝑠 ≥ 𝑡.

So for each 𝑡 ∈ PR with 𝑡 · 𝑡 ≤ 𝑟 ∨/# 𝑠 we have 𝑡 ≤ 𝑟 ∨/# 𝑠, which means that the
preradical 𝑟 ∨/# 𝑠 is semiprime. �

Moreover, from Propositon 2.8 if the preradical 𝑟 is semiprime, then its co-equalizer
𝑐(𝑟) is a semiprime preradical ([13]).

The Propositions 2.5 – 2.8 complete the previous studies in this domain and show new
properties of indicated operations.
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