# The behaviour of the inverse operations in the class of preradicals in special cases 

Ion Jardan


#### Abstract

In [4], [5], [6] four new operations are introduced and studied in the class of preradicals $\mathbb{P} \mathbb{R}$ of the category $R$-Mod of left $R$-modules, and is shown the behaviour of these operations in the case of some special types of preradicals as prime, coprime, $\wedge$-prime, $\vee$-coprime, irreducible and coirreducible. In this work we will present the behaviour of inverse operations in the case of semiprime and semicoprime preradicals.


2010 Mathematics Subject Classification: 16D90; 16S90.
Keywords: Ring, module, category, lattice, (pre)radical.

## Comportamentul operaţiilor inverse din clasa preradicalilor în cazuri speciale


#### Abstract

Rezumat. În [4], [5], [6] sunt introduse şi studiate patru operaţii noi în clasa preradicalilor $\mathbb{P} \mathbb{R}$ a categoriei $R$-modulelor stângi $R$-Mod, şi este arătat comportamentul acestor operaţii în cazul unor preradicali de tipuri speciale, aşa ca primi, coprimi, ^-primi, V-coprimi, ireductibili şi coireductibili. În această lucrare vom prezenta comportamentul operaţiilor inverse în cazul preradicalilor semiprimi şi semicoprimi.


Cuvinte cheie: Inel, modul, categorie, latice, (pre)radical.

## 1. Introduction and preliminary facts

This work is devoted to the theory of radicals of modules ([1], [2], [9], [10]) and contains some investigations of new four operations defined and studied in [4-6] in the class of preradicals of a module category.

Let $R$ be a ring with unity and $R$-Mod be the category of unitary left $R$-modules. We remind that a preradical $r$ of $R$-Mod is a subfunctor of identity functor of $R$-Mod, i.e. $r$ associates to every module $M \in R$-Mod a submodule $r(M) \subseteq M$ such that $f(r(M)) \subseteq r\left(M^{\prime}\right)$ for every $R$-morphism $f: M \rightarrow M^{\prime}$.

We denote by $\mathbb{P R}$ the class of all preradicals of the category $R$-Mod. In this class four operation are defined [1], [2], [9]:

1) the meet $\wedge_{\alpha \in \mathfrak{A}} r_{\alpha}$ of a family of preradicals $\left\{r_{\alpha}\right\}_{\alpha \in \mathfrak{A}}$ :

$$
\left(\wedge_{\alpha \in \mathfrak{A}}^{\wedge_{\alpha}} r_{\alpha}\right)(M) \stackrel{\text { def }}{=} \bigcap_{\alpha \in \mathfrak{A}} r_{\alpha}(M), M \in R-\mathrm{Mod}
$$

2) the join $\underset{\alpha \in \mathfrak{A}}{\vee} r_{\alpha}$ of a family of preradicals $\left\{r_{\alpha}\right\}_{\alpha \in \mathfrak{A}}$ :

$$
\left(\underset{\alpha \in \mathfrak{A}}{\vee} r_{\alpha}\right)(M) \stackrel{\text { def }}{=} \sum_{\alpha \in \mathfrak{A}} r_{\alpha}(M), M \in R-\mathrm{Mod}
$$

3) the product $r \cdot s$ of preradicals $r, s \in \mathbb{P} \mathbb{R}$ :

$$
(r \cdot s)(M) \stackrel{\text { def }}{=} r(s(M)), M \in R-\operatorname{Mod}
$$

4) the coproduct $r \# s$ of preradicals $r, s \in \mathbb{P} \mathbb{R}$ :

$$
[(r \# s)(M)] / s(M) \stackrel{\text { def }}{=} r(M / s(M)), M \in R \text {-Mod. }
$$

In the class $\mathbb{P} \mathbb{R}$ the partial order relation " $\leq "$ is defined by the rule:

$$
r_{1} \leq r_{2} \stackrel{\text { def }}{\Leftrightarrow} r_{1}(M) \subseteq r_{2}(M) \text { for every } M \in R \text {-Mod. }
$$

The class $\mathbb{P R}$ is a large complete lattice with respect to the operations of meet and join.

We remark that in the book [1], [2], [9] the coproduct is denoted by $(r: s)$ and is defined by the rule $[(r: s)(M)] / r(M)=s(M / r(M))$, so in our notations $(r \# s)=(s: r)$.

The following properties of distributivity hold ([1], [2], [9]):
(1) $\left(\wedge r_{\alpha}\right) \cdot s=\wedge\left(r_{\alpha} \cdot s\right)$;
(2) $\left(\vee r_{\alpha}\right) \cdot s=\vee\left(r_{\alpha} \cdot s\right)$;
(3) $\left(\wedge r_{\alpha}\right) \# s=\wedge\left(r_{\alpha} \# s\right)$;
(4) $\left(\vee r_{\alpha}\right) \# s=\vee\left(r_{\alpha} \# s\right)$
for every family $\left\{r_{\alpha}\right\}_{\alpha \in \mathfrak{A}} \subseteq \mathbb{P} \mathbb{R}$ and $s \in \mathbb{P} \mathbb{R}$.
Using these relations in [4], [5], [6] four new operations are introduced and studied in the class of preradicals $\mathbb{P R}$ in modules, namely, the inverse operations of the product and of the coproduct with respect to meet and to join. They are defined as follows:
(1) the left quotient with respect to join $r \% s=\vee\left\{r_{\alpha} \in \mathbb{P R} \mid r_{\alpha} \cdot s \leq r\right\}$, which exists for any preradicals $r, s \in \mathbb{P} \mathbb{R}$;
(2) the left coquotient with respect to meet $r \bigwedge_{\#} s=\wedge\left\{r_{\alpha} \in \mathbb{P} \mathbb{R} \mid r_{\alpha} \# s \geq r\right\}$, which exists for any preradicals $r, s \in \mathbb{P} \mathbb{R}$;
(3) the left quotient with respect to meet $r y s=\wedge\left\{r_{\alpha} \in \mathbb{P} \mathbb{R} \mid r_{\alpha} \cdot s \geq r\right\}$, which exists for any preradicals $r, s \in \mathbb{P} \mathbb{R}$ such that $r \leq s$;
(4) the left coquotient with respect to join $r \vee / \# s=\vee\left\{r_{\alpha} \in \mathbb{P} \mathbb{R} \mid r_{\alpha} \# s \leq r\right\}$, which exists for any preradicals $r, s \in \mathbb{P} \mathbb{R}$ such that $r \geq s$.

The similar questions are discussed in $[3 ; 7 ; 8]$.

## THE BEHAVIOUR OF THE INVERSE OPERATIONS IN THE CLASS OF PRERADICALS IN SPECIAL CASES

For each of defined operation we indicate a particular case, which coincides with a well known operator in $\mathbb{P R}$. Moreover, some properties of these operators are shown [46; 10-14].

For any preradical $r \in \mathbb{P} \mathbb{R}$, these particular cases are:
(1) $0 \% \cdot r=\vee\left\{r_{\alpha} \in \mathbb{P R} \mid r_{\alpha} \cdot r=0\right\}=a(r)$ is the annihilator of $r$;
(2) $1 \bigwedge_{\#} r=\wedge\left\{r_{\alpha} \in \mathbb{P} \mathbb{R} \mid r_{\alpha} \# r=1\right\}=t(r)$ is the totalizer of $r$;
(3) $r$ Y. $r=\wedge\left\{r_{\alpha} \in \mathbb{P R} \mid r_{\alpha} \cdot r=r\right\}=e(r)$ is the equalizer of $r$;
(4) $r \nVdash \neq r=\vee\left\{r_{\alpha} \in \mathbb{P} \mathbb{R} \mid r_{\alpha} \# r=r\right\}=c(r)$ is the co-equalizer of $r$.

These operators possess the following properties for any $r \in \mathbb{P} \mathbb{R}([10])$ :
(1) $a(r)$ is a radical;
(2) $t(r)$ is a Jansian pretorsion;
(3) $e(r)$ is an idempotent preradical;
(4) $c(r)$ is a radical.

Now we remind the some types of preradicals ([11-14]). A preradical $r \in \mathbb{P} \mathbb{R}$ is called:

- prime, if $r \neq 1$ and for each $t_{1}, t_{2} \in \mathbb{P R}, t_{1} \cdot t_{2} \leq r$ implies $t_{1} \leq r$ or $t_{2} \leq r$ [11];
- coprime, if $r \neq 0$ and for each $t_{1}, t_{2} \in \mathbb{P} \mathbb{R}, t_{1} \# t_{2} \geq r$ implies $t_{1} \geq r$ or $t_{2} \geq r$ [12];
- semiprime, if $r \neq 1$ and for each $t \in \mathbb{P} \mathbb{R}, t \cdot t \leq r$ implies $t \leq r$ [13];
- semicoprime, if $r \neq 0$ and for each $t \in \mathbb{P} \mathbb{R}, t \# t \geq r$ implies $t \geq r$ [14];
- $\wedge$-prime, if for each $t_{1}, t_{2} \in \mathbb{P} \mathbb{R}, t_{1} \wedge t_{2} \leq r$ implies $t_{1} \leq r$ or $t_{2} \leq r$ [11];
- $\vee$-coprime, if for each $t_{1}, t_{2} \in \mathbb{P} \mathbb{R}, t_{1} \vee t_{2} \geq r$ implies $t_{1} \geq r$ or $t_{2} \geq r$ [12];
- irreducible, if for each $t_{1}, t_{2} \in \mathbb{P} \mathbb{R}, t_{1} \wedge t_{2}=r$ implies $t_{1}=r$ or $t_{2}=r$ [11];
- coirreducible, if for each $t_{1}, t_{2} \in \mathbb{P} \mathbb{R}, t_{1} \vee t_{2}=r$ implies $t_{1}=r$ or $t_{2}=r$ [12].

The operations of meet and join are commutative and associative, while the operations of product and coproduct are associative. For every $r, s \in \mathbb{P} \mathbb{R}$ by means of these operations four preradicals are obtained which are arranged in the following order: $r \cdot s \leq r \wedge s \leq r \vee s \leq r \# s$.

During this work we will use the following facts and notions from general theory of preradicals (see [1], [2], [4]-[5], [9]).

Lemma 1.1. (Monotony of the product) For any $s_{1}, s_{2} \in \mathbb{P} R, s_{1} \leq s_{2}$ implies that $r \cdot s_{1} \leq r \cdot s_{2}$ and $s_{1} \cdot r \leq s_{2} \cdot r$ for every $r \in \mathbb{P} \mathbb{R}$.

Lemma 1.2. (Monotony of the coproduct) For any $s_{1}, s_{2} \in \mathbb{P} \mathbb{R}, s_{1} \leq s_{2}$ implies that $r \# s_{1} \leq r \# s_{2}$ and $s_{1} \# r \leq s_{2} \# r$ for every $r \in \mathbb{P} \mathbb{R}$.

Lemma 1.3. For every $r, s, t \in \mathbb{P} \mathbb{R}$ we have:
(1) $(r \cdot s) \# t \geq(r \# t) \cdot(s \# t)$;
(2) $(r \# s) \cdot t \leq(r \cdot t) \#(s \cdot t)$.

Proposition 1.4. Let $r, s, t \in \mathbb{P} \mathbb{R}$. Then
(1) $r \geq t \cdot s \Leftrightarrow r \% \cdot s \geq t$;
(2) $r \leq t \# s \Leftrightarrow r Y_{\# \#} \leq t$;
(3) $r \leq t \cdot s \Leftrightarrow r y . s \leq t$, where $r \leq s$;
(4) $r \geq t \# s \Leftrightarrow r{ }_{4 / \#} s \geq t$, where $r \geq s$.

The statements of Proposition 1.4 can be considered as another way of defining the inverse operations.

## 2. The behaviour of the inverse operations for some special types of PRERADICALS

In [4], [5], [6] are shown the behaviour of the inverse operations in $\mathbb{P R}$ in the case of such types of preradicals as prime, coprime, $\wedge$-prime, $\vee$-coprime, irreducible and coirreducible. In continuation we will indicate these properties.

Proposition 2.1. Let $r, s \in \mathbb{P}$. The following statemens are true:
(1) The preradical $r$ is prime if and only iffor any preradical $s$ we have $r \% s=1$ or $r \% s=r$.
(2) If $r$ is $\wedge$-prime, then $r \geqslant s$ is a $\wedge$-prime preradical.
(3) If $r=t \cdot s$ for some preradical $t \in \mathbb{P} \mathbb{R}$ and $r$ is irreducible, then the preradical $r \% s$ is irreducible.

Proposition 2.2. For every $r, s \in \mathbb{P} \mathbb{R}$ we have:
(1) The preradical $r$ is coprime if and only iffor any preradical $s$ we have $r \wedge_{\# \#} s=0$ or $r \Lambda_{\# \#} s=r$.
(2) If $r$ is $\vee$-coprime, then $r \bigwedge_{\#} s$ is a $\vee$-coprime preradical.
(3) If $r=t \# s$ for some preradical $t \in \mathbb{P} \mathbb{R}$ and $r$ is coirreducible, then the preradical $r y_{\#} s$ is coirreducible.

Proposition 2.3. Let $r \in \mathbb{P} \mathbb{R}$. The following statements hold:
(1) If $r$ is coprime, then $r \not \geqslant s$ is a coprime preradical for any preradical $s \geq r$.
(2) If $r$ is $\vee$-coprime, then $r \%$.s is a $\vee$-coprime preradical for any preradical $s \geq r$.
(3) If $r=t \cdot s$ for some preradical $t \in \mathbb{P} \mathbb{R}$ and $r$ is coirreducible, then the preradical $r \%$. $s$ is coirreducible for any preradical $s \in \mathbb{P} \mathbb{R}$.

Moreover, from Propositon 2.3 ([12]):
(1) if the preradical $r$ is coprime, then its equalizer $e(r)$ is coprime;
(2) if the preradical $r$ is $\vee$-coprime, then its equalizer $e(r)$ is $\vee$-coprime;
(3) if the preradical $r$ is coirreducible, then its equalizer $e(r)$ is coirreducible.

Proposition 2.4. Let $r \in \mathbb{P}$. The following facts are true:
(1) If $r$ is prime, then $r \bigvee / \# s$ is a prime preradical for any preradical $s \leq r$.
(2) If $r$ is $\wedge$-prime, then $r \vee / \neq$ is a $\wedge$-prime preradical for any preradical $s \leq r$.
(3) If $r=t \# s$ for some preradical $t \in \mathbb{P} \mathbb{R}$ and $r$ is irreducible, then the preradical $r \downarrow / / s$ is irreducible for any preradical $s \in \mathbb{P} \mathbb{R}$.

Moreover, from Propositon 2.4 ([11]):
(1) if the preradical $r$ is prime, then its co-equalizer $c(r)$ is prime;
(2) if the preradical $r$ is $\wedge$-prime, then its co-equalizer $c(r)$ is $\wedge$-prime;
(3) if the preradical $r$ is irreducible, then its co-equalizer $c(r)$ is irreducible.

Now we will show the behaviour of the inverse operations in the case of semiprime and semicoprime preradicals.

Proposition 2.5. If the preradical $r$ is semiprime, then the left quotient $r \% s$ is a semiprime preradical for every $s \in \mathbb{P}$.

Proof. Suppose that $r \neq 1$ and $t \cdot t \leq r \% s$ for each $t \in \mathbb{P}$. From the Proposition 1.4(1) we have $r \geq(t \cdot t) \cdot s$. Using the associativity of the product of preradicals we obtain $r \geq t \cdot(t \cdot s)$. Since $t \geq(t \cdot s)$, from the monotony of product of preradicals it follows that $t \cdot(t \cdot s) \geq(t \cdot s) \cdot(t \cdot s)$, i.e. $r \geq(t \cdot s) \cdot(t \cdot s)$. If $r$ is semiprime, then $r \geq(t \cdot s)$. From the Proposition 1.4(1) we obtain that $r \% s \geq t$.

So for each preradical $t \in \mathbb{P} \mathbb{R}$ with $t \cdot t \leq r \% s$ we have $t \leq r \% s$, which means that the preradical $r \% s$ is semiprime.

Proposition 2.6. If the preradical $r$ is semicoprime, then the left coquotient $r \bigwedge_{\#} s$ is a semicoprime preradical for every $s \in \mathbb{P} \mathbb{R}$.

Proof. Assume that $r \neq 0$ and $t \# t \geq r \bigwedge_{\#} s$ for each $t \in \mathbb{P R}$. Then from Proposition 1.4(2) we obtain $r \leq(t \# t) \# s$. Applying the associativity of coproduct of preradicals we have $r \leq t \#(t \# s)$. Because $t \leq t \# s$, using the monotony of coproduct of preradicals we obtain $t \#(t \# s) \leq(t \# s) \#(t \# s)$, therefore $r \leq(t \# s) \#(t \# s)$. If $r$ is semicoprime, then $r \leq(t \# s)$. From Proposition 1.4(2) we obtain that $r y_{\#} s \leq t$.

So for each preradical $t \in \mathbb{P} \mathbb{R}$ with $t \# t \geq r y_{\#} s$ we have $t \geq r y_{\#} s$, which means that the preradical $r \Lambda_{\#} S$ is semicoprime.

Proposition 2.7. If $r$ is a semicoprime preradical, then the preradical $r$ y. $s$ is semicoprime for any preradical $s \geq r$.

Proof. The condition $r \leq s$ ensures the existence of the left quotient $r \% s$.
Let the preradical $r \neq 0$ be semicoprime and $t \# t \geq r y . s$ for each preradical $t \in \mathbb{P} \mathbb{R}$. Using Proposition 1.4(3) we obtain $r \leq(t \# t) \cdot s$. From Lemma 1.3(2) $(t \# t) \cdot s \leq(t \cdot s) \#(t \cdot s)$, therefore $r \leq(t \cdot s) \#(t \cdot s)$. Since $r$ is semicoprime, it follows that $r \leq t \cdot s$. Applying Proposition 1.4(3) we obtain $r y . s \leq t$.

So for each $t \in \mathbb{P}$ with $t \# t \geq r y . s$ we have $t \geq r \%$. , which means that the preradical $r \%$. $s$ is semicoprime.

Moreover, from Propositon 2.7 if the preradical $r$ is semicoprime, then its equalizer $e(r)$ is a semicoprime preradical ([14]).

Proposition 2.8. If $r$ is a semiprime preradical, then the preradical $r \searrow / \neq s$ is semiprime for any preradical $s \leq r$.

Proof. The condition $r \geq s$ ensures the existence of the left coquotient $r{ }_{y / \#} s$.
Let the preradical $r \neq 1$ be semiprime and $t \cdot t \leq r \vee / \not s s$ for each preradical $t \in \mathbb{P} \mathbb{R}$. From the Proposition 1.4(4) we have $r \geq(t \cdot t) \# s$. By Lemma 1.3(1) we have $(t \cdot t) \# s \geq(t \# s) \cdot(t \# s)$, so $r \geq(t \# s) \cdot(t \# s)$. Since $r$ is semiprime, it follows that $r \geq t \# s$. Using Proposition 1.4(4) we obtain $r / / \# s \geq t$.

So for each $t \in \mathbb{P}$ 的 with $t \cdot t \leq r y / \neq s$ we have $t \leq r / / \neq s$, which means that the preradical $r \nu_{/ \#} s$ is semiprime.

Moreover, from Propositon 2.8 if the preradical $r$ is semiprime, then its co-equalizer $c(r)$ is a semiprime preradical ([13]).

The Propositions $2.5-2.8$ complete the previous studies in this domain and show new properties of indicated operations.

## References

[1] BICAN, L., KEPKA, T., NEMEC, P., Rings, modules and preradicals. Lect. Notes in Pure and Appl. Math. New York: Marcel Dekker, 1982, vol. 75, 241 p. ISBN 978-0824715687.
[2] KASHU A. I. Radicals and torsions in modules. Kishinev, Shtiintsa, 1983 (in Russian).
[3] GOLAN, J.S., Linear topologies on a ring: an overview. New York: Longman Scientific and Technical, 1987. 104 p. ISBN 978-0582013131.
[4] JARDAN, Ion, On the inverse operations in the class of preradicals of a module category, I. In: Bul. Acad. Ştiinţe Repub. Moldova, Mat. 2017, vol. 83, no. 1, pp. 57-66. ISSN 1024-7696.

## THE BEHAVIOUR OF THE INVERSE OPERATIONS IN THE CLASS OF PRERADICALS IN SPECIAL CASES

[5] JARDAN, Ion, On the inverse operations in the class of preradicals of a module category, II. In: Bul. Acad. Ştiinţe Repub. Moldova, Mat. 2017, vol. 84, no. 2, pp. 77-87. ISSN 1024-7696.
[6] JARDAN, Ion, On partial inverse operations in the class of preradicals of modules. In: An. Şt. Univ. Ovidius Constanţa. 2019, vol. 27, no. 2, pp. 15-36. ISSN 1224-1784.
[7] KASHU, A.I., On inverse operations in the lattices of submodules. In: Algebra and Discrete Math. 2012, vol. 13, no. 2, pp. 273-288. ISSN 1726-3255.
[8] KASHU, A.I., On partial inverse operations in the lattices of submodules. In: Bul. Acad. Şt. Repub. Mold., Mat. 2012, vol. 69, no. 2, pp. 59-73. ISSN 1024-7696.
[9] RAGGI, F., RIOS, J, RINCON, H., FERNANDEZ-ALONSO, R., SIGNORET, C. The lattice structure of preradicals. In: Commun. in Algebra 2002, vol. 30, no. 3, pp. 1533-1544. ISSN 0092-7872.
[10] RAGGI, F., RIOS, J, RINCON, H., FERNANDEZ-ALONSO, R., SIGNORET, C., The lattice structure of preradicals II: partitions. In: Journal of Algebra and Its Applications. 2002, vol. 1, no. 2, pp. 201-214. ISSN 0219-4988.
[11] RAGGI, F., RIOS, J., RINCON, H., FERNANDEZ-ALONSO, R., SIGNORET, C., Prime and irreducible preradicals. In: Journal of Algebra and Its Applications. 2005, vol. 4, no. 4, pp. 451-466. ISSN 0219-4988.
[12] RAGGI, F., RIOS, J., WISBAUER, R., Coprime preradicals and modules. In: Journal of Pure and Applied Algebra. 2005, vol. 200, pp. 51-69. ISSN 0022-4049.
[13] RAGGI, F., RIOS, J., RINCON, H., FERNANDEZ-ALONSO, R., SIGNORET, C., Semiprime Preradicals. In: Commun. in Algebra. 2009, vol. 37, no. 8, pp. 2811-2822. ISSN 0092-7872.
[14] RAGGI, F., RIOS, J., Gavito, S., RINCON, H., FERNANDEZ-ALONSO, R., Semicoprime preradicals. In: Journal of Algebra and Its Applications. 2012, vol.11, no. 6, 1250115. ISSN 0219-4988.
(Jardan Ion) Technical University of Moldova, Vladimir Andrunachievici Institute of
Mathematics and Computer Science, Chişinău, Republic of Moldova
E-mail address: ion.jardan@mate.utm.md; jordanion79@gmail.com

