The behaviour of the inverse operations in the class of preradicals in special cases

ION JARDAN

Abstract. In [4], [5], [6] four new operations are introduced and studied in the class of preradicals \mathbb{PR} of the category *R*-Mod of left *R*-modules, and is shown the behaviour of these operations in the case of some special types of preradicals as prime, coprime, \land -prime, \lor -coprime, irreducible and coirreducible. In this work we will present the behaviour of inverse operations in the case of semiprime and semicoprime preradicals.

2010 Mathematics Subject Classification: 16D90; 16S90. **Keywords:** Ring, module, category, lattice, (pre)radical.

Comportamentul operațiilor inverse din clasa preradicalilor în cazuri speciale

Rezumat. În [4], [5], [6] sunt introduse și studiate patru operații noi în clasa preradicalilor \mathbb{PR} a categoriei *R*-modulelor stângi *R*-Mod, și este arătat comportamentul acestor operații în cazul unor preradicali de tipuri speciale, așa ca primi, coprimi, \land -primi, \lor -coprimi, ireductibili și coireductibili. În această lucrare vom prezenta comportamentul operațiilor inverse în cazul preradicalilor semiprimi și semicoprimi.

Cuvinte cheie: Inel, modul, categorie, latice, (pre)radical.

1. INTRODUCTION AND PRELIMINARY FACTS

This work is devoted to the theory of radicals of modules ([1], [2], [9], [10]) and contains some investigations of new four operations defined and studied in [4 - 6] in the class of preradicals of a module category.

Let R be a ring with unity and R-Mod be the category of unitary left R-modules. We remind that a *preradical* r of R-Mod is a subfunctor of identity functor of R-Mod, i.e. r associates to every module $M \in R$ -Mod a submodule $r(M) \subseteq M$ such that $f(r(M)) \subseteq r(M')$ for every R-morphism $f: M \to M'$. We denote by \mathbb{PR} the class of all preradicals of the category *R*-Mod. In this class four operation are defined [1], [2], [9]:

In the class \mathbb{PR} the partial order relation " \leq " is defined by the rule:

 $r_{1} \leq r_{2} \stackrel{def}{\Leftrightarrow} r_{1}(M) \subseteq r_{2}(M)$ for every $M \in R$ -Mod.

The class \mathbb{PR} is a large complete lattice with respect to the operations of meet and join.

We remark that in the book [1], [2], [9] the coproduct is denoted by (r : s) and is defined by the rule [(r : s) (M)]/r (M) = s (M/r (M)), so in our notations (r # s) = (s : r).

The following properties of distributivity hold ([1], [2], [9]):

(1) $(\wedge r_{\alpha}) \cdot s = \wedge (r_{\alpha} \cdot s);$ (2) $(\vee r_{\alpha}) \cdot s = \vee (r_{\alpha} \cdot s);$ (3) $(\wedge r_{\alpha}) \# s = \wedge (r_{\alpha} \# s);$ (4) $(\vee r_{\alpha}) \# s = \vee (r_{\alpha} \# s);$

for every family $\{r_{\alpha}\}_{\alpha \in \mathfrak{A}} \subseteq \mathbb{PR}$ and $s \in \mathbb{PR}$.

Using these relations in [4], [5], [6] four new operations are introduced and studied in the class of preradicals \mathbb{PR} in modules, namely, the inverse operations of the product and of the coproduct with respect to meet and to join. They are defined as follows:

- (1) the *left quotient with respect to join* $r \forall s = \lor \{r_{\alpha} \in \mathbb{PR} \mid r_{\alpha} \cdot s \leq r\}$, which exists for any preradicals $r, s \in \mathbb{PR}$;
- (2) the *left coquotient with respect to meet* $r \gamma_{\#} s = \wedge \{r_{\alpha} \in \mathbb{PR} \mid r_{\alpha} \# s \ge r\}$, which exists for any preradicals $r, s \in \mathbb{PR}$;
- (3) the *left quotient with respect to meet* $r \gamma s = \wedge \{r_{\alpha} \in \mathbb{PR} \mid r_{\alpha} \cdot s \ge r\}$, which exists for any preradicals $r, s \in \mathbb{PR}$ such that $r \le s$;
- (4) the *left coquotient with respect to join* $r \not = \lor \{r_{\alpha} \in \mathbb{PR} \mid r_{\alpha} \neq s \leq r\}$, which exists for any preradicals $r, s \in \mathbb{PR}$ such that $r \geq s$.

The similar questions are discussed in [3; 7; 8].

For each of defined operation we indicate a particular case, which coincides with a well known operator in \mathbb{PR} . Moreover, some properties of these operators are shown [4 - 6; 10 - 14].

For any preradical $r \in \mathbb{PR}$, these particular cases are:

(1) $0 \forall r = \forall \{r_{\alpha} \in \mathbb{PR} \mid r_{\alpha} \cdot r = 0\} = a(r)$ is the *annihilator* of *r*;

(2) $1 \neq r = \wedge \{r_{\alpha} \in \mathbb{PR} \mid r_{\alpha} \# r = 1\} = t(r)$ is the *totalizer* of *r*;

(3)
$$r \gamma r = \wedge \{r_{\alpha} \in \mathbb{PR} \mid r_{\alpha} \cdot r = r\} = e(r)$$
 is the *equalizer* of *r*;

(4)
$$r \bigvee_{\#} r = \lor \{ r_{\alpha} \in \mathbb{PR} \mid r_{\alpha} \# r = r \} = c(r)$$
 is the *co-equalizer* of *r*.

These operators possess the following properties for any $r \in \mathbb{PR}$ ([10]):

- (1) a(r) is a radical;
- (2) t(r) is a Jansian pretorsion;
- (3) e(r) is an idempotent preradical;
- (4) c(r) is a radical.

Now we remind the some types of preradicals ([11 - 14]). A preradical $r \in \mathbb{PR}$ is called:

- prime, if $r \neq 1$ and for each $t_1, t_2 \in \mathbb{PR}$, $t_1 \cdot t_2 \leq r$ implies $t_1 \leq r$ or $t_2 \leq r$ [11];
- *coprime*, if $r \neq 0$ and for each $t_1, t_2 \in \mathbb{PR}$, $t_1 \# t_2 \ge r$ implies $t_1 \ge r$ or $t_2 \ge r$ [12];
- semiprime, if $r \neq 1$ and for each $t \in \mathbb{PR}$, $t \cdot t \leq r$ implies $t \leq r$ [13];
- semicoprime, if $r \neq 0$ and for each $t \in \mathbb{PR}$, $t \neq t \geq r$ implies $t \geq r$ [14];
- \wedge -prime, if for each $t_1, t_2 \in \mathbb{PR}$, $t_1 \wedge t_2 \leq r$ implies $t_1 \leq r$ or $t_2 \leq r$ [11];
- \lor -coprime, if for each $t_1, t_2 \in \mathbb{PR}$, $t_1 \lor t_2 \ge r$ implies $t_1 \ge r$ or $t_2 \ge r$ [12];
- *irreducible*, if for each $t_1, t_2 \in \mathbb{PR}$, $t_1 \wedge t_2 = r$ implies $t_1 = r$ or $t_2 = r$ [11];
- *coirreducible*, if for each $t_1, t_2 \in \mathbb{PR}$, $t_1 \lor t_2 = r$ implies $t_1 = r$ or $t_2 = r$ [12].

The operations of meet and join are commutative and associative, while the operations of product and coproduct are associative. For every $r, s \in \mathbb{PR}$ by means of these operations four preradicals are obtained which are arranged in the following order: $r \cdot s \leq r \wedge s \leq r \vee s \leq r \# s$.

During this work we will use the following facts and notions from general theory of preradicals (see [1], [2], [4]-[5], [9]).

Lemma 1.1. (Monotony of the product) For any $s_1, s_2 \in \mathbb{PR}$, $s_1 \leq s_2$ implies that $r \cdot s_1 \leq r \cdot s_2$ and $s_1 \cdot r \leq s_2 \cdot r$ for every $r \in \mathbb{PR}$.

Lemma 1.2. (Monotony of the coproduct) For any $s_1, s_2 \in \mathbb{PR}$, $s_1 \leq s_2$ implies that $r # s_1 \leq r # s_2$ and $s_1 # r \leq s_2 # r$ for every $r \in \mathbb{PR}$.

Lemma 1.3. For every $r, s, t \in \mathbb{PR}$ we have:

- (1) $(r \cdot s) \# t \ge (r \# t) \cdot (s \# t);$
- (2) $(r \# s) \cdot t \leq (r \cdot t) \# (s \cdot t).$

Proposition 1.4. Let $r, s, t \in \mathbb{PR}$. Then

- (1) $r \ge t \cdot s \Leftrightarrow r \forall s \ge t;$
- (2) $r \leq t # s \Leftrightarrow r \gamma_{\#} s \leq t;$
- (3) $r \leq t \cdot s \Leftrightarrow r \neq s \leq t$, where $r \leq s$;
- (4) $r \ge t \# s \Leftrightarrow r \forall_{\#} s \ge t$, where $r \ge s$.

The statements of Proposition 1.4 can be considered as another way of defining the inverse operations.

2. The behaviour of the inverse operations for some special types of preradicals

In [4], [5], [6] are shown the behaviour of the inverse operations in \mathbb{PR} in the case of such types of preradicals as prime, coprime, \wedge -prime, \vee -coprime, irreducible and coirreducible. In continuation we will indicate these properties.

Proposition 2.1. Let $r, s \in \mathbb{PR}$. The following statemens are true:

(1) The preradical r is prime if and only if for any preradical s we have $r \forall s = 1$ or $r \forall s = r$.

(2) If r is \land -prime, then $r \lor s$ is a \land -prime preradical.

(3) If $r = t \cdot s$ for some preradical $t \in \mathbb{PR}$ and r is irreducible, then the preradical $r \forall s$ is irreducible.

Proposition 2.2. *For every* $r, s \in \mathbb{PR}$ *we have:*

(1) The preradical r is coprime if and only if for any preradical s we have $r \gamma_{\#} s = 0$ or $r \gamma_{\#} s = r$.

(2) If r is \lor -coprime, then $r \land \# s$ is a \lor -coprime preradical.

(3) If r = t # s for some preradical $t \in \mathbb{PR}$ and r is coirreducible, then the preradical $r \checkmark_{\#} s$ is coirreducible.

Proposition 2.3. Let $r \in \mathbb{PR}$. The following statements hold:

(1) If r is coprime, then $r \not : s$ is a coprime preradical for any preradical $s \ge r$.

(2) If r is \lor -coprime, then $r \not \land s$ is a \lor -coprime preradical for any preradical $s \ge r$.

(3) If $r = t \cdot s$ for some preradical $t \in \mathbb{PR}$ and r is coirreducible, then the preradical $r \gamma s$ is coirreducible for any preradical $s \in \mathbb{PR}$.

Moreover, from Propositon 2.3 ([12]):

(1) if the preradical r is coprime, then its equalizer e(r) is coprime;

(2) if the preradical r is \lor -coprime, then its equalizer e(r) is \lor -coprime;

(3) if the preradical r is coirreducible, then its equalizer e(r) is coirreducible.

Proposition 2.4. *Let* $r \in \mathbb{PR}$ *. The following facts are true:*

(1) If r is prime, then $r \lor_{\#} s$ is a prime preradical for any preradical $s \le r$.

(2) If r is \land -prime, then $r \lor_{\#} s$ is a \land -prime preradical for any preradical $s \le r$.

(3) If r = t # s for some preradical $t \in \mathbb{PR}$ and r is irreducible, then the preradical

 $r \not\leq_{\#} s$ is irreducible for any preradical $s \in \mathbb{PR}$.

Moreover, from Propositon 2.4 ([11]):

(1) if the preradical r is prime, then its co-equalizer c(r) is prime;

(2) if the preradical r is \wedge -prime, then its co-equalizer c(r) is \wedge -prime;

(3) if the preradical r is irreducible, then its co-equalizer c(r) is irreducible.

Now we will show the behaviour of the inverse operations in the case of semiprime and semicoprime preradicals.

Proposition 2.5. If the preradical r is semiprime, then the left quotient $r \lor s$ is a semiprime preradical for every $s \in \mathbb{PR}$.

Proof. Suppose that $r \neq 1$ and $t \cdot t \leq r \forall s$ for each $t \in \mathbb{PR}$. From the Proposition 1.4(1) we have $r \geq (t \cdot t) \cdot s$. Using the associativity of the product of preradicals we obtain $r \geq t \cdot (t \cdot s)$. Since $t \geq (t \cdot s)$, from the monotony of product of preradicals it follows that $t \cdot (t \cdot s) \geq (t \cdot s) \cdot (t \cdot s)$, i.e. $r \geq (t \cdot s) \cdot (t \cdot s)$. If r is semiprime, then $r \geq (t \cdot s)$. From the Proposition 1.4(1) we obtain that $r \forall s \geq t$.

So for each preradical $t \in \mathbb{PR}$ with $t \cdot t \leq r \forall s$ we have $t \leq r \forall s$, which means that the preradical $r \forall s$ is semiprime.

Proposition 2.6. If the preradical r is semicoprime, then the left coquotient $r \searrow_{\#} s$ is a semicoprime preradical for every $s \in \mathbb{PR}$.

Proof. Assume that $r \neq 0$ and $t \# t \ge r \checkmark_{\#} s$ for each $t \in \mathbb{PR}$. Then from Proposition 1.4(2) we obtain $r \le (t \# t) \# s$. Applying the associativity of coproduct of preradicals we have $r \le t \# (t \# s)$. Because $t \le t \# s$, using the monotony of coproduct of preradicals we obtain $t \# (t \# s) \le (t \# s) \# (t \# s)$, therefore $r \le (t \# s) \# (t \# s)$. If r is semicoprime, then $r \le (t \# s)$. From Proposition 1.4(2) we obtain that $r \checkmark_{\#} s \le t$.

So for each preradical $t \in \mathbb{PR}$ with $t \# t \ge r \forall_{\#} s$ we have $t \ge r \forall_{\#} s$, which means that the preradical $r \forall_{\#} s$ is semicoprime.

Proposition 2.7. If r is a semicoprime preradical, then the preradical $r \neq s$ is semicoprime for any preradical $s \geq r$.

Proof. The condition $r \leq s$ ensures the existence of the left quotient $r \neq s$.

Let the preradical $r \neq 0$ be semicoprime and $t \# t \geq r \ \gamma \ s$ for each preradical $t \in \mathbb{PR}$. Using Proposition 1.4(3) we obtain $r \leq (t \# t) \cdot s$. From Lemma 1.3(2) $(t \# t) \cdot s \leq (t \cdot s) \# (t \cdot s)$, therefore $r \leq (t \cdot s) \# (t \cdot s)$. Since r is semicoprime, it follows that $r \leq t \cdot s$. Applying Proposition 1.4(3) we obtain $r \ \gamma \ s \leq t$.

So for each $t \in \mathbb{PR}$ with $t \# t \ge r \gamma$ s we have $t \ge r \gamma$ s, which means that the preradical $r \gamma$ s is semicoprime.

Moreover, from Propositon 2.7 if the preradical r is semicoprime, then its equalizer e(r) is a semicoprime preradical ([14]).

Proposition 2.8. If r is a semiprime preradical, then the preradical $r \lor_{\#} s$ is semiprime for any preradical $s \le r$.

Proof. The condition $r \ge s$ ensures the existence of the left coquotient $r \bigvee_{\#} s$.

Let the preradical $r \neq 1$ be semiprime and $t \cdot t \leq r \bigvee_{\#} s$ for each preradical $t \in \mathbb{PR}$. From the Proposition 1.4(4) we have $r \geq (t \cdot t) \# s$. By Lemma 1.3(1) we have $(t \cdot t) \# s \geq (t \# s) \cdot (t \# s)$, so $r \geq (t \# s) \cdot (t \# s)$. Since r is semiprime, it follows that $r \geq t \# s$. Using Proposition 1.4(4) we obtain $r \bigvee_{\#} s \geq t$.

So for each $t \in \mathbb{PR}$ with $t \cdot t \leq r \bigvee_{\#} s$ we have $t \leq r \bigvee_{\#} s$, which means that the preradical $r \bigvee_{\#} s$ is semiprime.

Moreover, from Propositon 2.8 if the preradical r is semiprime, then its co-equalizer c(r) is a semiprime preradical ([13]).

The Propositions 2.5 - 2.8 complete the previous studies in this domain and show new properties of indicated operations.

References

- BICAN, L., KEPKA, T., NEMEC, P., *Rings, modules and preradicals*. Lect. Notes in Pure and Appl. Math. New York: Marcel Dekker, 1982, vol. 75, 241 p. ISBN 978-0824715687.
- [2] KASHU A. I. Radicals and torsions in modules. Kishinev, Shtiintsa, 1983 (in Russian).
- [3] GOLAN, J.S., *Linear topologies on a ring: an overview*. New York: Longman Scientific and Technical, 1987. 104 p. ISBN 978-0582013131.
- [4] JARDAN, ION, On the inverse operations in the class of preradicals of a module category, I. In: Bul. Acad. Stiinte Repub. Moldova, Mat. 2017, vol. 83, no. 1, pp. 57-66. ISSN 1024-7696.

THE BEHAVIOUR OF THE INVERSE OPERATIONS IN THE CLASS OF PRERADICALS IN SPECIAL CASES

- [5] JARDAN, ION, On the inverse operations in the class of preradicals of a module category, II. In: Bul. Acad. Stiinte Repub. Moldova, Mat. 2017, vol. 84, no. 2, pp. 77-87. ISSN 1024-7696.
- [6] JARDAN, ION, On partial inverse operations in the class of preradicals of modules. In: An. Şt. Univ. Ovidius Constanța. 2019, vol. 27, no. 2, pp. 15-36. ISSN 1224-1784.
- [7] KASHU, A.I., On inverse operations in the lattices of submodules. In: Algebra and Discrete Math. 2012, vol. 13, no. 2, pp. 273-288. ISSN 1726-3255.
- [8] KASHU, A.I., On partial inverse operations in the lattices of submodules. In: Bul. Acad. Şt. Repub. Mold., Mat. 2012, vol. 69, no. 2, pp. 59-73. ISSN 1024-7696.
- [9] RAGGI, F., RIOS, J, RINCON, H., FERNANDEZ-ALONSO, R., SIGNORET, C. The lattice structure of preradicals. In: *Commun. in Algebra* 2002, vol. 30, no. 3, pp. 1533-1544. ISSN 0092-7872.
- [10] RAGGI, F., RIOS, J, RINCON, H., FERNANDEZ-ALONSO, R., SIGNORET, C., The lattice structure of preradicals II: partitions. In: *Journal of Algebra and Its Applications*. 2002, vol. 1, no. 2, pp. 201-214. ISSN 0219-4988.
- [11] RAGGI, F., RIOS, J., RINCON, H., FERNANDEZ-ALONSO, R., SIGNORET, C., Prime and irreducible preradicals. In: *Journal of Algebra and Its Applications*. 2005, vol. 4, no. 4, pp. 451-466. ISSN 0219-4988.
- [12] RAGGI, F., RIOS, J., WISBAUER, R., Coprime preradicals and modules. In: *Journal of Pure and Applied Algebra*. 2005, vol. 200, pp. 51-69. ISSN 0022-4049.
- [13] RAGGI, F., RIOS, J., RINCON, H., FERNANDEZ-ALONSO, R., SIGNORET, C., Semiprime Preradicals. In: *Commun. in Algebra*. 2009, vol. 37, no. 8, pp. 2811-2822. ISSN 0092-7872.
- [14] RAGGI, F., RIOS, J., Gavito, S., RINCON, H., FERNANDEZ-ALONSO, R., Semicoprime preradicals. In: *Journal of Algebra and Its Applications*. 2012, vol.11, no. 6, 1250115. ISSN 0219-4988.

(Jardan Ion) Technical University of Moldova, Vladimir Andrunachievici Institute of Mathematics and Computer Science, Chişinău, Republic of Moldova *E-mail address*: ion.jardan@mate.utm.md; jordanion79@gmail.com