# The property of universality for some monoid algebras over non-commutative rings 

Elena P. Cojuhari


#### Abstract

We define on an arbitrary ring $A$ a family of mappings ( $\sigma_{x, y}$ ) subscripted with elements of a multiplicative monoid $G$. The assigned properties allow to call these mappings derivations of the ring $A$. A monoid algebra of $G$ over $A$ is constructed explicitly, and the universality property of it is shown.


Mathematics subject classification: Primary 16S36; Secondary 13N15, 16S10.
Keywords and phrases: Derivations, monoid algebras, free algebras.

In this note we consider monoid algebras over non-commutative rings. First, we introduce axiomatically a family of mappings $\sigma=\left(\sigma_{x, y}\right)$ defined on a ring $A$ and subscripted with elements of a multiplicative monoid $G$. Due to their assigned properties these mappings can be called derivations of $A$. Next, we construct a monoid algebra $A\langle G\rangle$ by means of the family $\sigma$, and the universality of it is shown.

1. Let $A$ be a ring (in general non-commutative) and $G$ a multiplicative monoid. Throughout the paper we consider $1 \neq 0$ (where 0 is the null element of $A$, and 1 is the unit element for multiplication), the unit element of $G$ is denoted by $e$. We introduce a family of mappings of $A$ into itself by the following assumption.
(A) For each $x \in G$ there exists a unique family $\sigma_{x}=\left(\sigma_{x, y}\right)_{y \in G}$ of mappings $\sigma_{x, y}: A \longrightarrow A$ such that $\sigma_{x, y}=0$ for almost all $y \in G$ (here and thereafter, almost all will mean all but a finite number, that is, $\sigma_{x, y} \neq 0$ only for a finite set of $y \in G$ ) and for which the following properties are fulfilled:
(i) $\sigma_{x, y}(a+b)=\sigma_{x, y}(a)+\sigma_{x, y}(b)(a, b \in A ; x, y \in G)$;
(ii) $\sigma_{x, y}(a b)=\sum_{z \in G} \sigma_{x, z}(a) \sigma_{z, y}(b)(a, b \in A ; x, y \in G)$;
(iii) $\sigma_{x y, z}=\sum_{u v=z} \sigma_{x, u} \circ \sigma_{y, v}(x, y, z \in G)$;
(iv $) \sigma_{x, y}(1)=0(x \neq y ; x, y \in G) ; \quad$ (iv2) $\sigma_{x, x}(1)=1(x \in G)$;
$\left(i v_{3}\right) \sigma_{e, x}(a)=0(x \neq e ; x \in G)$;
$\left(i v_{4}\right) \sigma_{e, e}(a)=a(a \in A)$.
In (ii) the elements are multiplied as in the ring $A$, but in (iii) the symbol $\circ$ means the composition of maps.

Examples. 1. Let $A$ be a ring and let $G$ be a multiplicative monoid, and let $\sigma$ be a monoid-homomorphism of $G$ into $\operatorname{End}(A)$, i.e. $\sigma(x y)=\sigma(x) \circ \sigma(y)(x, y \in G)$ and $\sigma(e)=1_{A}$. We define $\sigma_{x, y}: A \longrightarrow A$ such that $\sigma_{x, x}=\sigma(x)$ for $x \in G$ and $\sigma_{x, y}=0$ for $y \neq x$. The properties $(i)-\left(i v_{4}\right)$ of (A) are verified at once.
(C) Elena P. Cojuhari, 2006
2. Let $A$ be a ring, and let $\alpha$ be an endomorphism of $A$ and $\delta$ be an $\alpha$-differentiation of $A$, i.e.

$$
\delta(a+b)=\delta(a)+\delta(b), \delta(a b)=\delta(a) b+\alpha(a) \delta(b)
$$

for every $a, b \in A$. Denote by $G$ the monoid of elements $x_{n}(n=0,1, \ldots)$ endowed with the law of composition defined by $x_{n} x_{m}=x_{n+m}\left(n, m=0,1, \ldots ; x_{0}:=e\right)$. We write $\sigma_{n m}$ instead of $\sigma_{x_{n}, x_{m}}$ by defining $\sigma_{n m}: A \longrightarrow A$ as the following mappings $\sigma_{00}=1_{A}, \sigma_{10}=\delta, \sigma_{11}=\alpha, \sigma_{n m}=0$ for $m>n$ and $\sigma_{n m}=\sum_{j_{1}+\ldots+j_{n}=m} \sigma_{1 j_{1}} \circ$ $\ldots \circ \sigma_{1 j_{n}}(m=0,1, \ldots, n ; n=1,2, \ldots)$, where $j_{k}=0,1(k=1, \ldots, n)$. The family $\sigma=\left(\sigma_{n m}\right)$ satisfies the axioms $(i)-\left(i v_{4}\right)$ of (A).
2. Next, we consider an algebra $A\langle G\rangle$ connected with the structure of differentiation $\sigma=\left(\sigma_{x, y}\right)$. Let $A\langle G\rangle$ be the set of all mappings $\alpha: G \longrightarrow A$ such that $\alpha(x)=0$ for almost all $x \in G$. We define the addition in $A\langle G\rangle$ to be the ordinary addition of mappings into the additive group of $A$ and define the operation of $A$ on $A\langle G\rangle$ by the map $(a, \alpha) \longrightarrow a \alpha(a \in A)$, where $(a \alpha)(x)=a \alpha(x)(x \in G)$. Note that, in respect to these operations, $A\langle G\rangle$ forms a left module over $A$. Following notations made in [1] we write an element $\alpha \in A\langle G\rangle$ as a sum $\alpha=\sum_{x \in G} a_{x} \cdot x$, where by $a \cdot x(a \in A, x \in G)$ is denoted the mapping whose value at $x$ is $a$ and 0 at elements different from $x$. Certainly, the above sum is taken over almost all $x \in G$. $A\langle G\rangle$ becomes a ring if for elements of the form $a \cdot x(a \in A ; x \in G)$ we define their product by the rule

$$
(a \cdot x)(b \cdot y)=\sum_{z \in G} a \sigma_{x, z}(b) \cdot z y(a, b \in A ; x, y \in G)
$$

and then extend for $\alpha, \beta \in A\langle G\rangle$ by the property of distributivity. We let

$$
\alpha a=\sum_{x \in G}\left(\sum_{y \in G} a_{y} \sigma_{y, x}(a)\right) \cdot x, \quad(a \in A, a l p h a \in A\langle G\rangle)
$$

for $a \in A$ and $\alpha \in A\langle G\rangle$, and thus we obtain an operation of $A$ on $A\langle G\rangle$ and in such a way we make $A\langle G\rangle$ into a right $A$-module. Thus, we may view $A\langle G\rangle$ as an algebra over $A$.

Remark. Let us consider the situation described in Example 1. Then the law of multiplication in $A\langle G\rangle$ is given as follows

$$
\left(\sum_{x \in G} a_{x} \cdot x\right)\left(\sum_{x \in G} b_{x} \cdot x\right)=\sum_{x \in G} \sum_{y \in G} a_{x} \sigma_{x, x}\left(b_{y}\right) \cdot x y .
$$

In this case, the monoid algebra $A\langle G\rangle$ represents a crossed product [2,3] of the multiplicative monoid $G$ over the ring $A$ with respect to the factors $\rho_{x, y}=1$ $(x, y \in G)$. If $G$ is a group, and $\sigma: G \longrightarrow \operatorname{End}(A)$ is such that $\sigma(x)=1_{A}$ for all $x \in G$, we evidently obtain an ordinary group ring [4] (the commutative case see also [5]).
3. In this subsection we show that $A\langle G\rangle$ is a free $G$ - algebra over $A$. Let $B$ be another ring. Given a ring-homomorphism $f: A \longrightarrow B$ it can be defined on the ring $B$ a structure of $A$-module, defining the operation of $A$ on $B$ by the $\operatorname{map}(a, b) \longrightarrow f(a) b$ for all $a \in A$ and $b \in B$. We denote this operation by $a * b$. The axioms for a module are trivially verified. Let now $\varphi: G \longrightarrow B$ be a multiplicative monoid-homomorphism. Denote by $\langle B ; f, \varphi\rangle$ the module formed by all linear combinations of elements $\varphi(x)(x \in G)$ over $A$ in respect to the operation *. The axioms for a left $A$-module are trivially verified.

We assume that the homomorphisms $f$ and $\varphi$ satisfy the following assumption.
(B) $\varphi(G) f(A) \subset\langle B ; f, \varphi\rangle$.

Thus, it is postulated that an element $\varphi(x) f(a)(a \in A, x \in G)$ can be written as a linear combination of the form $\sum_{b \in B, y \in G} b \varphi(y)$. The coefficients $b$ depend on $\varphi(x), \varphi(y)$ and $f(a)$. To designate this fact we denote the corresponding coefficients by $\sigma_{\varphi(x), \varphi(y)}(f(a))$. Therefore, it can be considered that there are defined a family of mappings $\sigma_{\varphi(x), \varphi(y)}: B \longrightarrow B$ such that

$$
\varphi(x) f(a)=\sum_{y \in G} \sigma_{\varphi(x), \varphi(y)}(f(a)) \varphi(y)(a \in A, x \in G)
$$

By these considerations, we may view $\langle B ; f, \varphi\rangle$ as a right $A$-module. In order to make the module $\langle B ; f, \varphi\rangle$ to be a ring we require the following additional assumption.
(C) The homomorphisms $f$ and $\varphi$ are such that the following diagram

$$
\begin{array}{lllll} 
& A & \xrightarrow{f} & B & \\
\sigma_{x, y} & \uparrow & & \uparrow & \sigma_{\varphi(x), \varphi(y)} \\
& A & \xrightarrow{f} & B &
\end{array}
$$

is commutative for every $x, y \in G$, i.e. $\sigma_{\varphi(x), \varphi(y)} \circ f=f \circ \sigma_{x, y}(x, y \in G)$.
We define multiplication in $\langle B ; f, \varphi\rangle$ by the rules

$$
\begin{gathered}
\left(\sum_{x \in G} a_{x} * \varphi(x)\right)\left(\sum_{x \in G} b_{x} * \varphi(x)\right)=\sum_{x \in G} \sum_{y \in G}\left(a_{x} * \varphi(x)\right)\left(b_{y} * \varphi(y)\right) \\
\left(a_{x} * \varphi(x)\right)\left(b_{y} * \varphi(y)\right)=f\left(a_{x}\right) \sum_{z \in G} \sigma_{\varphi(x), \varphi(z)}\left(f\left(b_{y}\right)\right) \varphi(z y)
\end{gathered}
$$

The verification that $\langle B ; f, \varphi\rangle$ is a ring under the above laws of composition is direct. Thus, we have made $\langle B ; f, \varphi\rangle$ into an algebra over $A$ (in general, non-commutative).

Next, we define a category $\mathcal{C}$ whose objects are algebras $\langle B ; f, \varphi\rangle$ constructed as above, and whose morphisms between two objects $\langle B ; f, \varphi\rangle$ and $\left\langle B^{\prime} ; f^{\prime}, \varphi^{\prime}\right\rangle$ are ring-homomorphisms $h: B \longrightarrow B^{\prime}$ making the diagrams commutative:


The axioms for a category are trivially satisfied. We call a universal object in the category $\mathcal{C}$ a free $G$-algebra over $A$, or a free $(A, G)$-algebra. It turns out that the monoid algebra $A\langle G\rangle$ represents a free $(A, G)$-algebra. To this end, we observe that the mapping $\varphi_{0}: G \longrightarrow A\langle G\rangle$ given by $\varphi_{0}(x)=1 \cdot x(x \in G)$ is a monoidhomomorphism. The mapping $\varphi_{0}$ is embedding of $G$ into $A\langle G\rangle$. In addition, we have a ring-homomorphism $f_{0}: A \longrightarrow A\langle G\rangle$ given by $f_{0}(a)=a \cdot e(a \in A)$. Obviously, $f_{0}$ is also an embedding. We identify $A\langle G\rangle$ with the triple $\left\langle A\langle G\rangle ; f_{0}, \varphi_{0}\right\rangle$ and in this sense we treat $A\langle G\rangle$ as an object of the category $\mathcal{C}$. The property of the universality of $A\langle G\rangle$ is formulated by the following assertion.

Theorem 1. Let $A$ be a ring, and $G$ a multiplicative monoid for which the assumptions $(A),(B)$ and $(C)$ are satisfied. Then for every object $\langle B ; f, \varphi\rangle$ of the category $\mathcal{C}$ there exists a unique ring-homomorphism $h: A\langle G\rangle \longrightarrow B$ making the following diagram commutative


The relation with the theory of skew polynomial rings [6-8] and with those obtained by Yu. M. Ryabukhin [9] (see also [10]), and further properties of the general derivation mappings $\sigma_{x, y}(x, y \in G)$ will be given in a subsequent publication.

## References

[1] Lang S. Algebra. Addison Wesley, Reading, Massuchsetts, 1970.
[2] Bovdi A.A. Crossed products of a semigroup and a ring. Sibirsk. Mat. Zh., 1963, 4, p. 481-499.
[3] Passman D.S. Infinite crossed products. Academic Press, Boston, 1989.
[4] Bovdi A.A. Group rings. Kiev UMK VO, 1988 (in Russian).
[5] Karpilovsky G. Commutative group algebras. New-York, 1983.
[6] Cohn P.M. Free rings and their relations. Academic Press, London, New-York, 1971.
[7] Smits T.H.M. Skew polynomial rings. Indag. Math., 1968, 30, p. 209-224.
[8] Smits T.H.M. The free product of a quadratic number field and semifield. Indag. Math., 1969, 31, p. 145-159.
[9] Ryabukhin Yu.M. Quasi-regular algebras, modules, groups and varieties. Buletinul A.S.R.M., Matematica, 1997, N 1(23), p. 6-62 (in Russian).
[10] Andrunakievich V.A., Ryabukhin Yu.M. Radicals of algebras and structure theory. Moscow, Nauka, 1979 (in Russian).

