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The property of universality for some monoid algebras

over non-commutative rings

Elena P. Cojuhari

Abstract. We define on an arbitrary ring A a family of mappings (σx,y) subscripted
with elements of a multiplicative monoid G. The assigned properties allow to call these
mappings derivations of the ring A. A monoid algebra of G over A is constructed
explicitly, and the universality property of it is shown.
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In this note we consider monoid algebras over non-commutative rings. First,
we introduce axiomatically a family of mappings σ = (σx,y) defined on a ring A

and subscripted with elements of a multiplicative monoid G. Due to their assigned
properties these mappings can be called derivations of A. Next, we construct a
monoid algebra A〈G〉 by means of the family σ, and the universality of it is shown.

1. Let A be a ring (in general non-commutative) and G a multiplicative monoid.
Throughout the paper we consider 1 6= 0 (where 0 is the null element of A, and 1
is the unit element for multiplication), the unit element of G is denoted by e. We
introduce a family of mappings of A into itself by the following assumption.

(A) For each x ∈ G there exists a unique family σx = (σx,y)y∈G of mappings
σx,y : A −→ A such that σx,y = 0 for almost all y ∈ G (here and thereafter, almost
all will mean all but a finite number, that is, σx,y 6= 0 only for a finite set of y ∈ G)
and for which the following properties are fulfilled:

(i) σx,y(a + b) = σx,y(a) + σx,y(b) (a, b ∈ A;x, y ∈ G);

(ii) σx,y(ab) =
∑

z∈G σx,z(a)σz,y(b) (a, b ∈ A;x, y ∈ G);

(iii) σxy,z =
∑

uv=z σx,u ◦ σy,v (x, y, z ∈ G);

(iv1) σx,y(1) = 0 (x 6= y;x, y ∈ G); (iv2) σx,x(1) = 1 (x ∈ G);

(iv3) σe,x(a) = 0 (x 6= e;x ∈ G); (iv4) σe,e(a) = a (a ∈ A).

In (ii) the elements are multiplied as in the ring A, but in (iii) the symbol ◦
means the composition of maps.

Examples. 1. Let A be a ring and let G be a multiplicative monoid, and let σ be
a monoid-homomorphism of G into End(A), i.e. σ(xy) = σ(x) ◦σ(y) (x, y ∈ G) and
σ(e) = 1A. We define σx,y : A −→ A such that σx,x = σ(x) for x ∈ G and σx,y = 0
for y 6= x. The properties (i) − (iv4) of (A) are verified at once.
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2. Let A be a ring, and let α be an endomorphism of A and δ be an
α-differentiation of A, i.e.

δ(a + b) = δ(a) + δ(b), δ(ab) = δ(a)b + α(a)δ(b)

for every a, b ∈ A. Denote by G the monoid of elements xn (n = 0, 1, ...) endowed
with the law of composition defined by xnxm = xn+m (n,m = 0, 1, ...; x0 := e). We
write σnm instead of σxn,xm

by defining σnm : A −→ A as the following mappings
σ00 = 1A, σ10 = δ, σ11 = α, σnm = 0 for m > n and σnm =

∑

j1+...+jn=m σ1j1 ◦
... ◦ σ1jn

(m = 0, 1, ..., n; n = 1, 2, ...), where jk = 0, 1 (k = 1, ..., n). The family
σ = (σnm) satisfies the axioms (i) − (iv4) of (A).

2. Next, we consider an algebra A〈G〉 connected with the structure of differ-
entiation σ = (σx,y). Let A〈G〉 be the set of all mappings α : G −→ A such that
α(x) = 0 for almost all x ∈ G. We define the addition in A〈G〉 to be the ordinary
addition of mappings into the additive group of A and define the operation of A

on A〈G〉 by the map (a, α) −→ aα (a ∈ A), where (aα)(x) = aα(x) (x ∈ G). Note
that, in respect to these operations, A〈G〉 forms a left module over A. Following
notations made in [1] we write an element α ∈ A〈G〉 as a sum α =

∑

x∈G ax · x,
where by a ·x (a ∈ A, x ∈ G) is denoted the mapping whose value at x is a and 0 at
elements different from x. Certainly, the above sum is taken over almost all x ∈ G.

A〈G〉 becomes a ring if for elements of the form a · x (a ∈ A;x ∈ G) we define their
product by the rule

(a · x)(b · y) =
∑

z∈G

aσx,z(b) · zy (a, b ∈ A;x, y ∈ G)

and then extend for α, β ∈ A〈G〉 by the property of distributivity. We let

αa =
∑

x∈G

(

∑

y∈G

ayσy,x(a)
)

·x, (a ∈ A, alpha ∈ A〈G〉)

for a ∈ A and α ∈ A〈G〉, and thus we obtain an operation of A on A〈G〉 and in
such a way we make A〈G〉 into a right A-module. Thus, we may view A〈G〉 as an
algebra over A.

Remark. Let us consider the situation described in Example 1. Then the law of
multiplication in A〈G〉 is given as follows

(

∑

x∈G

ax · x
)(

∑

x∈G

bx · x
)

=
∑

x∈G

∑

y∈G

axσx,x(by) · xy.

In this case, the monoid algebra A〈G〉 represents a crossed product [2, 3] of the
multiplicative monoid G over the ring A with respect to the factors ρx,y = 1
(x, y ∈ G). If G is a group, and σ : G −→ End(A) is such that σ(x) = 1A for
all x ∈ G, we evidently obtain an ordinary group ring [4] (the commutative case see
also [5]).
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3. In this subsection we show that A〈G〉 is a free G - algebra over A. Let
B be another ring. Given a ring-homomorphism f : A −→ B it can be defined
on the ring B a structure of A-module, defining the operation of A on B by the
map (a, b) −→ f(a)b for all a ∈ A and b ∈ B. We denote this operation by
a ∗ b. The axioms for a module are trivially verified. Let now ϕ : G −→ B be
a multiplicative monoid-homomorphism. Denote by 〈B; f, ϕ〉 the module formed by
all linear combinations of elements ϕ(x) (x ∈ G) over A in respect to the operation
∗. The axioms for a left A-module are trivially verified.

We assume that the homomorphisms f and ϕ satisfy the following assumption.

(B) ϕ(G)f(A) ⊂ 〈B; f, ϕ〉.

Thus, it is postulated that an element ϕ(x)f(a) (a ∈ A,x ∈ G) can be written
as a linear combination of the form

∑

b∈B,y∈G b ϕ(y). The coefficients b depend on
ϕ(x), ϕ(y) and f(a). To designate this fact we denote the corresponding coefficients
by σϕ(x),ϕ(y)(f(a)). Therefore, it can be considered that there are defined a family
of mappings σϕ(x),ϕ(y) : B −→ B such that

ϕ(x)f(a) =
∑

y∈G

σϕ(x),ϕ(y)(f(a))ϕ(y) (a ∈ A,x ∈ G).

By these considerations, we may view 〈B; f, ϕ〉 as a right A-module. In order to make
the module 〈B; f, ϕ〉 to be a ring we require the following additional assumption.

(C) The homomorphisms f and ϕ are such that the following diagram

A
f

−→ B
σx,y ↑ ↑ σϕ(x),ϕ(y)

A
f

−→ B

is commutative for every x, y ∈ G, i.e. σϕ(x),ϕ(y) ◦ f = f ◦ σx,y (x, y ∈ G).

We define multiplication in 〈B; f, ϕ〉 by the rules
(

∑

x∈G

ax ∗ ϕ(x)
)(

∑

x∈G

bx ∗ ϕ(x)
)

=
∑

x∈G

∑

y∈G

(ax ∗ ϕ(x))(by ∗ ϕ(y)),

(ax ∗ ϕ(x))(by ∗ ϕ(y)) = f(ax)
∑

z∈G

σϕ(x),ϕ(z)(f(by))ϕ(zy).

The verification that 〈B; f, ϕ〉 is a ring under the above laws of composition is direct.
Thus, we have made 〈B; f, ϕ〉 into an algebra over A (in general, non-commutative).

Next, we define a category C whose objects are algebras 〈B; f, ϕ〉 constructed
as above, and whose morphisms between two objects 〈B; f, ϕ〉 and 〈B

′

; f
′

, ϕ
′

〉 are
ring-homomorphisms h : B −→ B

′

making the diagrams commutative:

G === G
ϕ ↓ ↓ ϕ′

B
h

−→ B′

f ↑ ↑ f ′

A === A
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The axioms for a category are trivially satisfied. We call a universal object in
the category C a free G-algebra over A, or a free (A,G)-algebra. It turns out that
the monoid algebra A〈G〉 represents a free (A,G)-algebra. To this end, we observe
that the mapping ϕ0 : G −→ A〈G〉 given by ϕ0(x) = 1 · x (x ∈ G) is a monoid-
homomorphism. The mapping ϕ0 is embedding of G into A〈G〉. In addition, we have
a ring-homomorphism f0 : A −→ A〈G〉 given by f0(a) = a · e (a ∈ A). Obviously, f0

is also an embedding. We identify A〈G〉 with the triple 〈A〈G〉; f0, ϕ0〉 and in this
sense we treat A〈G〉 as an object of the category C. The property of the universality
of A〈G〉 is formulated by the following assertion.

Theorem 1. Let A be a ring, and G a multiplicative monoid for which the assump-

tions (A), (B) and (C) are satisfied. Then for every object 〈B; f, ϕ〉 of the category

C there exists a unique ring-homomorphism h : A〈G〉 −→ B making the following

diagram commutative

G === G
ϕ0 ↓ ↓ ϕ

A〈G〉
h

−→ B
f0 ↑ ↑ f

A === A

The relation with the theory of skew polynomial rings [6–8] and with those
obtained by Yu. M. Ryabukhin [9] (see also [10]), and further properties of the
general derivation mappings σx,y (x, y ∈ G) will be given in a subsequent publication.
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