SKEW RING EXTENSIONS AND GENERALIZED MONOID RINGS

E. P. COJUHARI^{1,2} and B. J. GARDNER^{3,*}

¹Institute of Mathematics and Computer Science, Academiei str. 5, MD 2028 Chişinău, Moldova

²Department of Mathematics, Technical University of Moldova, Ştefan cel Mare av. 168, MD 2004 Chişinău, Moldova e-mail: elena.cojuhari@mate.utm.md

³Discipline of Mathematics, University of Tasmania, PB 37, Hobart, TAS. 7001, Australia e-mail: Barry.Gardner@utas.edu.au

(Received July 11, 2017; accepted December 5, 2017)

A D-structure on a ring A with identity is a family of self-Abstract. mappings indexed by the elements of a monoid G and subject to a long list of rather natural conditions. The mappings are used to define a generalization of the monoid algebra A[G]. We consider two of the simpler types of D-structure. The first is based on a homomorphism from G to End(A) and leads to a skew monoid ring. We also explore connections between these D-structures and normalizing and subnormalizing extensions. The second type of D-structure considered is built from an endomorphism of A. We use D-structures of this type to characterize rings which can be graded by a cyclic group of order 2.

1. Introduction

A system called a *D*-structure in [6] and introduced in [5] consists of a ring A with an identity 1, a monoid G with identity e and mappings $\sigma_{x,y}: A \to A$ satisfying the following condition for all $x, y, z \in G$ and $a, b \in A$.

Condition (A).

(0) For each $x \in G$ and $a \in R$, we have $\sigma_{x,y}(a) = 0$ for almost all $y \in G$.

- (i) Each $\sigma_{x,y}$ is an additive endomorphism. (ii) $\sigma_{x,y}(ab) = \sum_{z \in G} \sigma_{x,z}(a)\sigma_{z,y}(b)$. (iii) $\sigma_{xy,z} = \sum_{uv=z} \sigma_{x,u} \circ \sigma_{y,v}$. (iv₁) $\sigma_{x,y}(1) = 0$ if $x \neq y$;

- (iv₂) $\sigma_{x,x}(1) = 1;$

* Corresponding author.

Key words and phrases: skew polynomial ring, skew monoid ring, normalizing extension, subnormalizing extension, graded ring.

Mathematics Subject Classification: 16A05, 16S20, 16S36, 16W50.

(iv₃) $\sigma_{e,x}(a) = 0$ if $x \neq e$;

(iv₄) $\sigma_{e,e}(a) = a$.

For brevity a *D*-structure described in the notation of Condition (A) will be referred to as "a *D*-structure σ " or by cognate phrases.

In [5] a sort of "skew" or "twisted" monoid ring $A\langle\langle G, \sigma \rangle$ associated with A and G was constructed by means of the mappings $\sigma_{x,y}$. (The connection with the structures usually called skew monoid rings will be elucidated in the next section.) The multiplication in $A\langle G, \sigma \rangle$ is given by the rule

$$(a \cdot x)(b \cdot y) = a \sum_{z \in G} \sigma_{x,z}(b) \cdot zy$$

and distributivity. Examples include group rings, skew polynomial rings and the Weyl algebras. There are also connections with gradings of rings.

We shall examine two relatively simple types of *D*-structures: those defined by a monoid homomorphism from *G* to the monoid of (ring-) endomorphisms of *A* and those defined by an endomorphism *f* of *A* using the fact that if $\delta(a) = a - f(a)$ for all $a \in A$ then δ is an (f, id)-derivation, i.e. $\delta(ab) = \delta(a)b + f(a)\delta(b)$ for all $a, b \in A$. For the former we establish connections with normalizing extensions [3] and subnormalizing extensions (also known as triangular extensions [7], [11]). We obtain criteria for \mathbb{Z}_2 gradability by means of the latter.

2. D-structures, skew monoid rings and normalizing extensions

For a ring R with identity 1 and a monoid G with identity e let

$$F: G \to \operatorname{End}(A)$$

be a monoid homomorphism, where $\operatorname{End}(A)$ is the monoid of ring endomorphisms with respect to composition. We obtain a *D*-structure σ^F by defining $\sigma^F_{x,y}$ to be F(x) if x = y and the zero map otherwise. (This is easily verified; cf. [5, Example 1].) This is the situation where *G* acts on *A* by endomorphisms.

PROPOSITION 2.1. If σ is defined by a monoid homomorphism F, then in $A\langle G, \sigma \rangle$ the multiplication is given by the formula

$$(a \cdot x)(b \cdot y) = a\sigma(x)(b) \cdot xy.$$

If σ is defined by an endomorphism F then Proposition 2.1 says that $A\langle G, \sigma \rangle \ (= A\langle G, \sigma^F \rangle)$ is the *skew monoid ring of* G over A defined by F in the sense of [1]. In particular when G is the free monoid generated by an