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Abstract

Ryabukhin showed that there is a correspondence between elementary radical classes of rings and certain

filters of ideals of the free ring on one generator, analogous to the Gabriel correspondence between torsion

classes of left unital modules and certain filters of left ideals of the coefficient ring. This correspondence

is further explored here. All possibilities for the intersection of the ideals in a filter are catalogued, and

the connections between filters and other ways of describing elementary radical classes are investigated.

Some generalisations to nonassociative rings and groups are also presented.
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1. Introduction

Let F be the free associative ring on a single generator x, that is, F = xZ[x]. Elements

of F are denoted by symbols such as f or f (x) as convenient, and the composition of f

and g is written as f ◦ g or f (g). For f ∈ F and an element a of a ring A, f (a) denotes

the element of A obtained by the substitution of a for x in f. This gives an action of F

on A, which shares some features with the action of a ring with identity on its modules.

For an element a of a ring A, we denote by [a] the subring generated by a. We let

(0 ∗ a) = { f ∈ F : f (a) = 0},
and, more generally,

(I ∗ a) = { f ∈ F : f (a) ∈ I}
for every I ⊳ A. In our analogy between F acting on rings and a ring with identity

acting on modules, (0 ∗ a) plays the part of the annihilator of a module. For every

element a of every ring A there is a homomorphism

F → A; x 7→ a,

whose image is [a] and whose kernel is (0 ∗ a). This gives the following statement.
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[2] Radicals and filters 451

PROPOSITION 1.1. For every element a of a ring A, (0 ∗ a) ⊳ F.

The following concept was introduced by Ryabukhin [11]. A set Φ of ideals of F is

called a radical filter if it satisfies the following conditions.

(1) If G ∈ Φ and G ⊆ T ⊳ F, then T ∈ Φ.

(2) If G ∈ Φ and f ∈ F, then (G ∗ f ) ∈ Φ.

(3) If G ∈ Φ, H ⊳ F and (H ∗ g) ∈ Φ for every g ∈ G, then H ∈ Φ.

If H ⊳ F and G ∈ Φ, then H ⊆ G + H ∈ Φ by (1). If f (x) = a1x + a2x2
+ · · · + anxn ∈

F, then for g ∈ G and h ∈ H,

f (g + h) = a1(g + h) + a2(g2
+ 2gh + h2) + · · · + an(gn

+ ngn−1h + · · · + nghn−1
+ hn)

= f (g) + an element of H,

whence f (g) ∈ H if and only if f (g + h) ∈ H. Thus, in (3) it may be assumed that

H ⊆ G. If G, H ∈ Φ then, using the isomorphism G/(G ∩ H) � (G + H)/H, we see

that for g ∈ G,

(G ∩ H ∗ g) = (0 ∗ (g + G ∩ H)) = (0 ∗ (g + H)) = (H ∗ g) ∈ Φ,

whence, by (3), if G, H ∈ Φ then G ∩ H ∈ Φ. (Thus, Φ really is a filter.) A radical class

R (in the Kurosh–Amitsur sense) is said to be elementary if it satisfies the condition

A ∈ R ⇐⇒ ∀a ∈ A, [a] ∈ R.

Note that an elementary radical class is strongly hereditary: subrings of rings in

R are themselves in R. Elementary radical classes have several different names

in the literature; Ryabukhin [11] called them semistrictly hereditary (polustrogo

nasledstvennyi). Our principal interest is the connection between elementary radical

classes and radical filters.

THEOREM 1.2 (Ryabukhin [11]). For an elementary radical class R and a radical

filter Φ, let ΦR = {(0 ∗ a) : a ∈ A ∈ R} and RΦ = {A : a ∈ A⇒ (0 ∗ a) ∈ Φ}. Then

(i) ΦR is a radical filter;

(ii) RΦ is an elementary radical class; and

(iii) the correspondences R 7→ ΦR and Φ 7→ Rφ define inverse bijections between the

set of elementary radical classes and the set of radical filters.

The following result is useful for proving Theorem 1.2 and elsewhere.

PROPOSITION 1.3. Let R be an elementary radical class and define ΦR as in Theorem

1.2. Then ΦR = {G ⊳ F : F/G ∈R}.

PROOF. If G ∈ ΦR then G = (0 ∗ b) for some b ∈ B ∈ R. But [b] ∈ R, so that we have

F/G = F/(0 ∗ b) � [b] ∈ R. Conversely, if G ⊳ F and F/G ∈ R, let x = x + G. Then

G = { f ∈ F : f (x) ∈ G} = (0 ∗ x),

where x ∈ F/G ∈ R. �
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452 E. P. Cojuhari and B. J. Gardner [3]

REMARK 1.4. As the radical filters form a set, so do the elementary radical classes.

Radical filters of ideals of F and their relationship to elementary radical classes

closely resemble the idempotent topologising filters of left ideals of a ring R with

identity introduced by Gabriel [1] a few years earlier and their connections with

hereditary radical classes (torsion classes) of (left unital) R-modules. Since modules

form an abelian category, hereditary radical classes of modules are elementary in the

obvious sense. Although Gabriel’s definition of his filters was a bit different, there is

an equivalent formulation very like that of radical filters (see, for example, the book by

Mishina and Skornyakov [8, Sections 0 and 2]). In more recent literature, idempotent

topologising filters are commonly called radical filters.

2. Results

If an elementary radical class R is closed under direct products, it must be a variety

and hence a semi-simple-radical class, that is, it is the semi-simple class corresponding

to another radical class (see [6, Section 3.20]). In this case, there is an ideal K of F

which is a T-ideal (invariant under endomorphisms of F) such that R is the class of

rings satisfying the identities { f ≈ 0 : f ∈ K}.

THEOREM 2.1. Let R be an elementary radical class. The following conditions are

equivalent.

(i) R is closed under direct products.

(ii) R is a variety.

(iii) R is a semi-simple-radical class.

(iv)
⋂{G : G ∈ ΦR} ∈ΦR.

(v) K =
⋂{G : G ∈ ΦR} is a T-ideal and K is the ideal of F generated by the set

{ℓ ◦ k : ℓ, k ∈K}.

PROOF. (i)⇒ (ii)⇒ (iii) as noted.

(iii) ⇒ (iv). By (iii), R is the variety generated by a finite set of finite fields. Let

A = K1 ⊕ K2 ⊕ · · · ⊕ Kn be the direct sum of all fields in R, and let [ai] = Ki for each i.

Then

(0 ∗ (a1, a2, . . . , an)) ∈ ΦR
and, as each ring in R is a subdirect product of (copies of) the fields Ki,

(0 ∗ (a1, a2, . . . , an)) ⊆ (0 ∗ b) for all b ∈ B ∈ R.

This gives

(0 ∗ (a1, a2, . . . , an)) =
⋂
{G ⊳ F : G ∈ ΦR} ∈ ΦR.

(iv)⇒ (v). Let K =
⋂{G ⊳ F : G ∈ ΦR}. Then F/K ∈ R, so for all f ∈ F,

(K ∗ f ) = (0 ∗ ( f + K)) ∈ ΦR.

Thus, K ⊆ (K ∗ f ), which means that k ◦ f = k( f ) ∈ K for all k ∈ K, f ∈ F.
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[4] Radicals and filters 453

Let α be an endomorphism of F and let α(x) = c1x + c2x2
+ · · · + cnxn

= h(x) ∈ F.

Then, for any k = b1x + b2x2
+ · · · + bmxm ∈ K,

α(k) = α(b1x + b2x2
+ · · · + bmxm) = b1α(x) + b2α(x)2

+ · · · + bmα(x)m

= k(α(x)) = k(h) ∈ K.

Thus, K is preserved by endomorphisms of F and is a T-ideal. Since R is defined as

a variety by identities in one variable (for an explicit description, see the theorem in

[5]), K is the T-ideal which defines R.

Now let K ◦ K be the ideal of F generated by all k1 ◦ k2 for k1, k2 ∈ K. In K/K ◦ K,

for each k ∈ K, ℓ ◦ k ∈ K ◦ K for all ℓ ∈ K, so that

(0 ∗ (k + K ◦ K)) = (K ◦ K ∗ k) ⊇ K ∈ ΦR

and K/K ◦ K ∈ R. But also (F/K ◦ K)/(K/K ◦ K) � F/K ∈ R, so we conclude that

F/K ◦ K ∈ R, whence K ⊆ K ◦ K ⊆ K.

(v) ⇒ (i). Let Φ be the set of ideals of F which contain K. We will show that Φ is a

radical filter. Condition (1) is obvious. If K ⊆ G ⊳ F and f = a1x + a2x2
+ · · · + anxn

then there is an endomorphism α of F such that α(x) = f . Hence, for every k ∈ K,

k( f ) = k(α(x)) = α(k) ∈ K ⊆ G,

so K ⊆ (G ∗ f ) and this is (2) for Φ. Finally, if K ⊆ G ⊳ F, H ⊳ F and (H ∗ g) ⊇ K for

all g ∈ G, then k ◦ g ∈ H for all k ∈ K and g ∈ G, so in particular k ◦ ℓ ∈ H for all

k, ℓ ∈ K. But then K ⊆ H, and so Φ satisfies (3) and is therefore a radical filter. Now

K =
⋂{G ⊳ F : G ∈ ΦR}, so ΦR ⊆ Φ. But by (1) in the definition of a radical filter,

every radical filter which contains K must contain Φ, so in particular Φ ⊆ ΦR and the

two filters are equal.

If aλ ∈ Aλ ∈ R for all λ in some index set Λ, then in
∏
λ∈Λ Aλ,

(0 ∗ (aλ)Λ) = { f ∈ F : f ((aλ)Λ) = 0} = { f ∈ F : ( f (aλ))Λ = 0} =
⋂

λ∈Λ
(0 ∗ aλ) ⊇ K,

so (0 ∗ (aλ)Λ) ∈ ΦR. Hence,
∏
λ∈Λ Aλ ∈ R. �

COROLLARY 2.2. The following conditions are equivalent for an ideal K of F.

(i) {G ⊳ F : K ⊆ G} is a radical filter.

(ii) K is a T-ideal and K ◦ K = K.

This result is a corollary of the proof of Theorem 2.1. Note that since the

correspondence between radical filters and elementary radical classes is bijective, we

also have a bijection between semi-simple radical classes and T-ideals K of F for which

K = K ◦ K.

Analogously, it was shown by Jans [7] that a hereditary radical class of modules is

closed under direct products if and only if there is an idempotent ideal I such that the

corresponding filter of left ideals is {L : I ⊆ L}.
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454 E. P. Cojuhari and B. J. Gardner [5]

We shall examine the properties of the intersection of all ideals in a radical filter a

bit further. Let R be any elementary radical class and let J =
⋂{G ⊳ F : G ∈ ΦR}.

PROPOSITION 2.3. If R contains some nonzero nilpotent rings then J = 0.

PROOF. Since R is strongly hereditary, if it contains nonzero nilpotent rings it contains

a nonzero torsion-free nilpotent ring or one which is a reduced p-ring for some prime

p (and the former implies the latter anyway). But then by [2, Theorem 1.2] there is

no nontrivial polynomial identity satisfied by every ring in R. But f (a) = 0 for all

a ∈ A ∈ R for all f ∈ J, so J = 0. �

A ring A is periodic if for each a ∈ A there is an integer n > 1 such that an
= a.

PROPOSITION 2.4. If J , 0 then every ring in R is periodic.

PROOF. Since J , 0, the previous result says that R contains no nonzero nilpotent

rings. But if a ∈ A ∈ R then R contains [a] and hence also [a]/[a]2. Since the latter

is nilpotent, [a] = [a]2, that is, a = r2a2
+ r3a3

+ · · · for some integers ri. Since this is

true for all a ∈ A, by [12, Corollary 3.5] or [9, Theorem 13.2], A is periodic. �

In what follows, GF(pn) denotes the field with pn elements.

Let R be an elementary radical class and let F be the set of fields in R. Then F
is strongly hereditary. Let V be the variety generated by F . Since each ring in R is a

subdirect product of periodic fields which must be in F , we have R ⊆ V.

If F is finite, so that all fields in F are finite, then any ring A ∈ V is a subdirect

product of fields in F . By [12, Proposition 3.7], each finitely generated subring, so

in particular each singly generated subring, is a finite direct sum of fields in F and

hence in R. Since R is elementary, A is in R, so in this case R = V and J is the T-ideal

definingV.

If F is infinite but contains only finite fields, then there are fields in F of infinitely

many characteristics p1 < p2 < · · · < pn < · · · , and as F is strongly hereditary it must

contain GF(pn) for each n. Suppose J contains some f = a1x + asx
2
+ · · · + amxm.

Then there exists a t such that m < pt. Now a1y + a2y2
+ · · · + amym

= 0 for every

y ∈ GF(pt). Reducing all coefficients modulo pt gives a polynomial a1 + a2x2
+ · · · +

amxm ∈ GF(pt)[x] with pt > m roots. Hence, the polynomial is zero, which means that

the original coefficients a1, a2, . . . , am are all divisible by pt. But in the same way the

coefficients are also divisible by pt+1, pt+2, . . . . Hence, the coefficients are all 0 and

thus J = 0.

If F contains an infinite field P of characteristic p then, as in the previous argument,

every f ∈ J induces a polynomial over P with ‘too many roots’, whence f ∈ pF. It

follows that if F contains infinite fields of infinitely many characteristics then J = 0.

It is clear from what we have already said that if F contains infinite fields of finitely

many characteristics and infinitely many finite fields of other characteristics, then J = 0

still holds.

There remains only the case where F contains infinite fields of finitely many

characteristics q1, q2, . . . , qn and at most finitely many finite fields P1, P2, . . . , Pm of

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972720001021
Downloaded from https://www.cambridge.org/core. The Library of the Technical University of Moldova, on 08 Dec 2021 at 10:37:51, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972720001021
https://www.cambridge.org/core


[6] Radicals and filters 455

characteristic p1, p2, . . . , pm, respectively, where no pj is a qi. If there are some Pj,

let W be the variety generated by {P1, P2, . . .Pm} and let W be the corresponding

T-ideal. Then J = W ∩ q1q2 · · · qnF. But for any f ∈ F , if q1q2 · · · qn f ∈ W then,

as p1 p2 · · · pm f ∈ W and q1q2 · · · qn
and p1 p2 · · · pm are relatively prime, it follows

that f ∈ W. Hence, W ∩ q1q2 · · · qnF = q1q2 · · · qnW. Finally, if there are no Pj then

J = q1q2 · · · qnF.

In summary, we have proved the following result.

THEOREM 2.5. Let R be an elementary radical class and R , {0}.

(i) If R contains nonzero nilpotent rings then
⋂
ΦR = 0. Otherwise R consists of

periodic rings and contains a set F of fields.

(ii) If F is finite then R is a semi-simple-radical class and
⋂
ΦR is the T-ideal

corresponding to R as a variety.

(iii) If F contains infinite fields with finitely many characteristics q1, q2, . . . , qn

and finitely many finite fields P1, P2, . . . , Pm of characteristics other than

q1, q2, . . . , qn, then J = q1q2 · · · qnW.

(iv) If F contains infinite fields of finitely many characteristics q1, q2, . . . , qn and no

finite fields of other characteristics, then J = q1q2 · · · qnF.

(v) In all other cases, J = 0.

We do not need a whole radical filter to describe an elementary radical class. For

example, if R is an elementary radical class and Θ is a subset of ΦR such that for each

G ∈ ΦR there is an H ∈ Θ with H ⊆ G, then it is not difficult to show that

R = {A : (∀a ∈ A)(∃H ∈ Θ)(H ⊆ (0 ∗ a)}.

However, there is another way of characterising an elementary radical class which

uses even fewer ingredients. If S is a ◦-subsemigroup of F, then

RS = {A : (∀a ∈ A)(∃ f ∈ S)( f (a) = 0)}

is an elementary radical class. For example, RS is closed under extensions because S

is closed under ◦.
Many examples are given in [4]. For instance, if S = {xn : n = 1, 2, 3, . . .} then RS =

N (the nil radical class).

What is the radical filter associated with a radical class RS? Which elementary

radical classes can be represented by semigroups?

We know nothing about the second question. In particular, there is no elementary

radical class which has been shown not to have a semigroup representation. We can

say a bit more about the first. Since radical filters are closed under ‘getting bigger’, the

following set of ideals seems promising. Let

ΦS = {G ⊳ F : G ∩ S , ∅}.

Sometimes this is the required radical filter. In what follows, we shall indicate the

principal ideal of F generated by an element f by ( f ).
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456 E. P. Cojuhari and B. J. Gardner [7]

PROPOSITION 2.6. Let S = {xn : n = 1, 2, 3, . . .}. Then ΦS = ΦN .

PROOF. We first prove that ΦS is a radical filter. Condition (1) is obvious. If xn ∈ G ∈
ΦS and f = a1x + a

2
x2
+ · · · + amxm ∈ F then

f n
= (a1x + · · · + amxm)n

= an
1xn
+ (terms in higher powers of x) ∈ (xn) ⊆ G.

Hence xn ∈ (G ∗ f ), so (G ∗ f ) ∈ ΦS and (2) is satisfied.

Again take xn ∈ G ∈ ΦS and let H be an ideal of F such that H ⊆ G and (H ∗ g) ∈ ΦS

for every g ∈ G. In particular, (H ∗ xn) ∈ ΦS. Let xm be in (H ∗ xn). Then xmn
= (xn)m ∈

H, so H ∈ ΦS. This proves (3), so ΦS is a radical filter.

Hence, there is an elementary radical class RΦS
. If A is in this class and a ∈ A then

(0 ∗ a) ∈ ΦS, so xn ∈ (0 ∗ a) for some n, that is, an
= 0 and it follows that A is nil.

Conversely, if b ∈ B ∈ N then bm
= 0 for some m, which means that xm ∈ (0 ∗ b) and

so (0 ∗ b) ∈ ΦS. We conclude that N = RΦS
. But then, using the bijections between

elementary radical classes and radical filters, ΦN = ΦRΦS
= ΦS. �

Similarly, for S = {nx : n = 1, 2, 3, . . .}, which defines the elementary radical classT
of torsion rings, or S = {mxn : m, n = 1, 2, 3, . . .}, which defines the elementary radical

class T ◦ N of rings A for which A/T (A) ∈ N , ΦS = ΦRS
.

The next theorem follows by arguments like those in the proof of Proposition 2.6.

THEOREM 2.7. Let S be a ◦-subsemigroup of F and let

RS = {A : a ∈ A⇒ (∃t ∈ S)(t(a) = 0)} and ΦS = {G ⊳ F : G ∩ S , ∅}.

Then RS is an elementary radical class. Moreover,

(i) ΦS satisfies (1) and (3) in the definition of a radical filter, and

(ii) if ΦS is a radical filter then ΦS = ΦRS
.

A set ΦS need not satisfy (2) in the definition of a radical filter. Let T be the set of

Chebyshev polynomials (of the first kind) of odd degree. Then T can be viewed as a

subset of F and is a semigroup with respect to ◦. By [4, Theorem 2.6], RT is the class

of odd torsion nil rings.

PROPOSITION 2.8. In the notation just introduced, ΦT is not a radical filter.

PROOF. We have to show that ΦT does not satisfy (2) of the definition of a radical

filter. The standard reference for Chebyshev polynomials is the book of Rivlin [10];

here, we give a few facts to make the proof a bit more self-contained. The nth

Chebyshev polynomial Tn has degree n and Tn(x) = cos nθ on the open interval

(−1, 1), where x = cos θ and Tn(x) has n roots, all in (−1, 1). For all m, n, we have

Tm ◦ Tn = Tmn. For even n, Tn has an x-free term and so cannot be treated as an

element of F.

The principal ideal (T3) is in ΦT , so in particular, if ΦT is to be a radical filter,

((T3) ∗ 10x) must be in ΦT , that is, it must contain some Tn. This means that for some

n, Tn(10x) must be in (T3). The roots of T3 are 0 and ±
√

3/2, and all elements of
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[8] Radicals and filters 457

(T3) must have at least these roots. But all roots of Chebyshev polynomials are in

the interval (−1, 1), so Tn(10
√

3/2) = Tn(5
√

3) , 0 and thus Tn(10x) < (T3), that is,

Tn < ((T3) ∗ 10x). �

Thus, the relationship between a semigroup and the filter of the radical class it

defines remains mysterious.

3. Other types of rings

All that we have done so far can be done just as well with algebras over a field K,

with F replaced by the free algebra xK[x]. A periodic K-algebra is a periodic ring, so by

[12, Theorem 3.4] if K has characteristic 0 there are no nonzero periodic K-algebras

and all nontrivial elementary radical classes are contained in the radical class NK

of nil K-algebras. But the elementary radical subclasses of N are those of the form

{A ∈ N : A+ ∈ A} for a radical class A of abelian groups, where A+ is the additive

group of A ([4], Theorem 4.1). As there no nontrivial radical classes of vector spaces,

NK has no proper elementary radical subclasses (and is the only nontrivial elementary

radical class of K-algebras if K has characteristic 0). If K has prime characteristic, the

elementary radical clases of periodic K-algebras are like those of rings, but all fields

involved are algebraic extensions of K.

THEOREM 3.1.

(i) If K is a field of characteristic 0, the only nontrivial radical filter of ideals of

xK[x] is {I : (∃ n)(xn ∈ I)}, which corresponds to NK .

(ii) If K is a field of prime characteristic then {I : (∃ n)(xn ∈ I)} corresponding to

NK is the only radical filter associated with a class of nil algebras, and all other

elementary radical classes of K-algebras consist of periodic algebras built from

algebraic extensions of K.

In any variety of not necessarily associative rings with the same one-generator free

ring F as the class of associative rings (for example, alternative, power-associative

and Jordan rings), there must be the same radical filters, and although in different

settings the rings belonging to the radical classes corresponding to a given filter will

sometimes be different, anything describable in terms of F alone, such as the identities

which define a radical-semi-simple class, must be the same.

In such varieties (where ‘nil’ has its usual meaning but some circumspection

is required in the definition of ‘nilpotent’), elementary radical subclasses of the

nil radical class are still additively determined: to prove the required version of

Theorem 4.1 in [4], use [3, Corollary 5.6], which is based on a result from [13].

Theorem 13.2 of [9], which we have already used, and which shows among other

things that periodic rings are torsion rings, was actually proved for power-associative

rings. All periodic alternative rings are associative, but for Jordan rings there are

nonassociative simple periodic Jordan rings ([9], Proposition 15.4). (If squeamish

about 2-torsion, consider algebras over the subring of Q generated by 1/2.)
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4. What about groups?

The group-theoretic analogue of the Ryabukhin correspondence is a natural subject

for enquiry, and we shall give the details in this final section. We call a radical class of

groups elementary if a group belongs to this class if and only if all its cyclic subgroups

do so. We begin with a rather obvious result which is useful in what follows.

PROPOSITION 4.1. For a multiplicative submonoid M , {1} of the positive integers,

the following conditions are equivalent:

(i) mn ∈ M⇒ m, n ∈ M;

(ii) M is generated by primes.

We denote the identity element of any group by e and the cyclic subgroup generated

by a group element g by 〈g〉. If an elementary radical class contains a group with an

element of infinite order, it contains the infinite cyclic groups and hence all cyclic

groups, and so all groups. Thus, we need only consider torsion groups. Write o(g) for

the order of an element g ∈ G.

THEOREM 4.2. A radical class R of groups is elementary if and only if

R = RM = {G : g ∈ G⇒ o(g) ∈ M}

for some monoidM generated by primes.

PROOF. Let M be the submonoid of the positive integers generated by a set E of

primes. If N ⊳ G ∈ RM, then o(g) ∈ M for each g ∈ G and (gN)o(g)
= e so o(gN), as

a divisor of o(g), is inM, whence G/N ∈ RM and RM is homomorphically closed. If

N1 ⊆ N2 ⊆ · · · ⊆ Nα · · ·

is a chain of normal subgroups of a group with each Nα ∈ RM, then any element y of⋃
α Nα is in some Nβ, so o(y) ∈ M and thus

⋃
α Nα ∈ RM. Finally, if H ⊳ G, and H and

G/H are both in RM, let z be an element of G and let m = o(zH). Then m ∈ M and

zm ∈ H, whence o(zm) ∈ M. Set n = o(zm). Then znm
= e, so o(z) | mn ∈ M. But then

o(z) ∈ M. It follows that RM is a radical class.

It is straightforward to show that a group is in RM if and only if all its cyclic

subgroups are in RM.

Conversely, for an elementary radical class R, letM = {o(g) : g ∈ G ∈ R}. If m, n ∈
M, let m = o(g), n = o(h) for elements g, h of groups in R. Then 〈g〉, 〈h〉 ∈ R, so

(by closure under extensions!) 〈g〉 × 〈h〉 ∈ R and hence mn = o(g, h) ∈ M, so M is a

semigroup. In fact,M is a monoid, since 1 = o(e) ∈ M. If k = ℓt ∈ M, let k = o(w) for

some w ∈ H ∈ R. Then o(wℓ) = t, so t ∈ M, and M is therefore generated by primes.

Now, clearly, R ⊆ RM, but if a group H is in RM all its cyclic subgroups are in R and

so H itself is in R. Hence R = RM. �
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The free group on a single generator is an infinite cyclic group 〈x〉, which acts on

groups by evaluation as in rings: xn acting on g gives gn. Analogous to (0 ∗ a),

(e ∗ g) = {xn : gn
= e} = {xn : o(g) | n} = 〈xo(g)〉.

Thus, we need to look at the set

{〈xo(g)〉 : g ∈ G ∈ RM} = {〈xm〉 : m ∈ M},

to which it is convenient to give the name ΦM rather than ΦR.

The sets ΦM satisfy the analogues of (1), (2) and (3) in the definition of a radical

filter. Only (3) presents any difficulty.

Let 〈xm〉 be in ΦM and let n ∈ Z+ be such that o(a〈xn〉) ∈ M for each a ∈ 〈xm〉. Then,

in particular, o(xm〈xn〉) ∈ M. Let r be the lowest common multiple of m and n, with

r = r′m = r′′n. Then (xm)r′
= xmr′

= xnr′′ ∈ 〈xn〉. If also (xm)t
= (xn)s for some t, s ∈ Z+,

then xmt
= xns so that mt = ns is a common multiple of m and n, so r′m = r | mt,

whence r′ | t and r′ = o(xm〈xn〉) ∈ M. But then n | r′′n = r′m ∈ M, so n ∈ M. This

is (3).

Conversely, let Φ be a set of subgroups of 〈x〉 satisfying (1), (2) and (3), andMΦ =

{m ∈ Z+ : 〈xm〉 ∈ Φ}. If k ∈ MΦ and ℓ | k, then 〈xk〉 ⊆ 〈xℓ〉. Since 〈xk〉 is inΦ, (1) implies

that 〈xℓ〉 ∈ Φ, that is, ℓ ∈ MΦ and so MΦ is ‘closed under factors’. If m, n ∈ MΦ, then

〈xm〉 ∈ Φ, and for each a ∈ 〈xm〉,

o(a〈xmn〉) | |〈xm〈xmn〉〉| = |〈xm〉/〈xmn〉| = m ∈ MΦ,

so o(a〈xmn〉) ∈ MΦ, whence 〈xmn〉 ∈ Φ by (3), that is, mn ∈ MΦ.

It is easily seen that the correspondences between radical classes and monoids

and between monoids and filters are bijective. Because all radical classes con-

tain the group {e} and all filters contain 〈x〉, monoids rather than semigroups are

involved.
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