Minimization of Disproportionality in PR Voting Systems

Ion Bolun

Abstract

A generalized algorithm for the minimization of disproportionality in voting systems with proportional representation, using one of 10 indices, inclusive Sainte-Laguë, d'Hondt, Lijphart and Gallagher indices, is proposed.

Keywords: algorithm, disproportion, index, optimization, proportional representation, voting systems.

1 Introduction

When taking collective decisions, using voting systems with proportional representation (PR), to minimize the disproportion of deciders' will representation is required - disproportion caused by the character in integers of the number of deciders and that of alternative options. To estimate this disproportion, the use of special indices is needed. In this paper, the use, in this aim, of Sainte-Laguë, d'Hondt, Gallagher, Lijphart, Relative deviation and other five indices in party-list PR (LPR) elections is investigated.

2 The LPR elections' disproportionality minimization problem

Let: M - number of seats in the elected body; n - number of parties that have reached or exceeded the representation threshold; V - total valid votes cast for the n parties; $V_{i}-$ total valid votes cast for party $i ; x_{i}-$ number of seats to be allocated to party $i ; I$ - index of disproportionality. It is required [3] to determine unknowns $x_{i}(i=\overline{1, n})$ - nonnegative integers, which will assure the I extreme value (minimum or maximum, depending on the essence of I)

$$
\begin{equation*}
I=f\left(M ; n ; V_{i}, x_{i}, i=\overline{1, n}\right) \rightarrow \text { extremum } \tag{1}
\end{equation*}
$$

in compliance with restrictions:

$$
\begin{align*}
& x_{1}+x_{2}+\ldots+x_{n}=M, \tag{2}\\
& V_{1}+V_{2}+\ldots+V_{n}=V . \tag{3}
\end{align*}
$$

D'Hondt index I_{H} is the minimum ratio between v_{i} and m_{i}

$$
\begin{equation*}
I_{H}=\min \left\{v_{i} / m_{i}, i=\overline{1, n}\right\}=\min \left\{V_{i} /\left(Q x_{i}\right), i=\overline{1, n}\right\} \tag{4}
\end{equation*}
$$

where $Q=V / M$ (Hare quota [1]), $v_{i}=100 \cdot V_{i} / V(\%)$ and $m_{i}=100 \cdot x_{i} / M(\%)$.
Sainte-Laguë index [1], noted here I_{S-L}, is calculated as

© 2011 by Ion Bolun

$$
\begin{equation*}
I_{S-L}=\sum_{i=1}^{n} \frac{1}{v_{i}}\left(v_{i}-m_{i}\right)^{2} \tag{5}
\end{equation*}
$$

Gallagher index [1], noted here $I_{G a}$, is determined as

$$
\begin{equation*}
I_{G_{a}}=\sqrt{\frac{1}{2} \sum_{i=1}^{n}\left(v_{i}-m_{i}\right)^{2}}=\sqrt{\frac{1}{2} \sum_{i=1}^{n}\left(\frac{V_{i}}{V}-\frac{x_{i}}{M}\right)^{2}}=\frac{100}{V} \sqrt{\frac{1}{2} \sum_{i=1}^{n}\left(V_{i}-Q x_{i}\right)^{2}} \tag{6}
\end{equation*}
$$

Lijphart index [2], noted here I_{L}, constituted the maximum absolute deviation between m_{i} and v_{i}

$$
\begin{equation*}
I_{L}=\max \left\{\left|v_{i}-m_{i}\right|, i=\overline{1, n}\right\} . \tag{7}
\end{equation*}
$$

3 The generalized algorithm of disproportionality minimization

Let $a_{i}=\left[V_{i} / Q\right]$, where $[z]$ signifies the integer part of z. Then $V_{i}=a_{i} Q+\Delta V_{i}$ and $x_{i}=a_{i}+\Delta x_{i}$, where ΔV_{i} is the remainder from dividing V_{i} to Q, and Δx_{i} is the number of supplementary seats for party i, in addition to the a_{i} ones. It is easy to prove that, in sense of (1)-(7), $\Delta x_{i}=0$ or $\Delta x_{i}=1$. So, the formula for the minimum value $I_{G a}^{*}$ of the Gallagher index (6) can be presented as

$$
\begin{align*}
& I_{G_{a}}^{*}=\frac{100}{V} \min \sqrt{\frac{1}{2} \sum_{i=1}^{n}\left(Q a_{i}+\Delta V_{i}-Q a_{i}-\Delta x_{i} Q\right)^{2}}= \\
& \frac{100}{V} \min \sqrt{\frac{1}{2} \sum_{i=1}^{n}\left(\Delta V_{i}-\Delta x_{i} Q\right)^{2}} \tag{8}
\end{align*}
$$

Thus, to each party $i(i=\overline{1, n})$ has already been allocated proportionally (with 0 contribution to the value of $I_{G a}^{*}$) by a_{i} seats, using in this aim $a_{i} Q$ votes, and remaining undistributed $\Delta M \leq n-1$ seats for $\Delta M Q$ unused votes; the problem of minimizing $I_{G a}$ is reduced to determining $\Delta x_{i}, i=$ $\overline{1, n}$ in (7). The following equalities hold

$$
\begin{equation*}
\Delta M=\Delta x_{1}+\Delta x_{2}+\cdots+\Delta x_{n}=\left(\Delta V_{1}+\Delta V_{2}+\cdots+\Delta V_{n}\right) / Q \tag{9}
\end{equation*}
$$

Expression $Q-\Delta V_{i}=Q-R_{j}=\Delta R_{j} \geq 0$ represents the complement of remainder $R_{j}=\Delta V_{i}$ to Hare quota Q. Each such complement contributes to the value of $I_{G a}$ only if $\Delta x_{i}=1$, to party i being distributed in excess ΔR_{j} votes, and does not contribute, if $\Delta x_{i}=0$, in this case contributing to the value of I_{d} the remainder ΔV_{i} itself, which is equal to the number of votes loosed by party i. Conform to (9), from the n values Δx_{i} only ΔM are equal to 1 . Given that the total number ΔR of votes in excess, allocated to parties for which $\Delta x_{i}=$ 1 , is equal to the total number of votes ΔV, loosed by parties for which $\Delta x_{i}=$ 0 , we get

$$
\begin{equation*}
\Delta R=\sum_{j=1}^{\Delta M} \Delta R_{j}=\Delta M Q-\sum_{j=1}^{\Delta M} R_{j}=\sum_{j=\Delta M+1}^{n} R_{j}=\Delta V . \tag{10}
\end{equation*}
$$

Replacing (10) in (8), we get

$$
\begin{equation*}
I_{G_{a}}^{*}=\frac{100}{V} \min \sqrt{\frac{1}{2}\left(\sum_{j=1}^{\Delta M} \Delta R_{j}^{2}+\sum_{j=\Delta M+1}^{n} R_{j}^{2}\right)} . \tag{11}
\end{equation*}
$$

The value of $\left(Q-\Delta V_{i}\right)^{2}$ is preferable to the $\left(Q-\Delta V_{k}\right)^{2}$ one, to be one of the ΔM factors of the first sum in (11), only if relation $\left(Q-\Delta V_{i}\right)^{2}+\Delta V_{k}^{2}<$ $\left(Q-\Delta V_{k}\right)^{2}+\Delta V_{i}^{2}$ holds, from where we get the necessary condition: $\Delta V_{i}<$ ΔV_{k}. So, to minimize $I_{G a}$ it is necessary and sufficient that from the n ones to select ΔM largest remainders $R_{j}=\Delta V_{i}$ and to each of the respective parties to add by one additional seat to the already allocated a_{i} ones. It can be seen that the algorithm for minimization of $I_{G a}$ is similar to the method of largest remainder with the Hare quota [1].

The minimum value I_{L}^{*} of Lijphart index (7) can be got from formula

$$
I_{L}^{*}=\min \max _{i=\overline{1, n}}\left|v_{i}-m_{i}\right|=\frac{100}{V} \min \max _{i=\overline{1, n}}\left|\Delta V_{i}-\Delta x_{i} Q\right|=\frac{100}{V} \min \Delta R_{k},
$$

where ΔR_{k} is the largest from the ΔM smallest complements ΔR_{j} from the n ones. In the base of suggestions, similar to ones used for the minimization of the Gallagher index, it can be found that the minimization of the Lijphart index is assured by the method of largest remainder with the Hare quota, too.

The seats allocation optimization, in sense of d'Hondt index (4), supposes that the smallest from ratios $v_{i} / m_{i}, i=\overline{1, n}$ be as large as possible:

$$
\begin{equation*}
I_{H}^{*}=\max \min \left\{\frac{V_{i}}{Q x_{i}}, i=\overline{1, n}\right\}=\max \min \left\{\frac{V_{i}}{\left[Q\left(a_{i}+\Delta x_{i}\right)\right]}, i=\overline{1, n}\right\} . \tag{12}
\end{equation*}
$$

By the definition of Q, the following relations hold: $V_{i} /\left[Q\left(a_{i}+1\right)\right]<1$ $\leq V_{i} /\left(Q a_{i}\right)$ and $a_{1}+a_{2}+\ldots+a_{n} \leq M<n+a_{1}+a_{2}+\ldots+a_{n}$. Equality in the last relation holds only at proportional allocation of seats to the n parties; in this case $I_{H}^{*}=1$. If $I_{H}^{*}<1$, then for $K \leq \Delta M$ parties hold $\Delta x_{i}^{*} \geq 1$, and for the other n - K ones $-\Delta x_{i}^{*}=0$. So, when determining $I_{H}^{*}<1$ can be considered only ratios $V_{i} /\left[Q\left(a_{i}+\Delta x_{i}\right)\right]$, where $\Delta x_{i} \geq 1$. Moreover, the value of $I_{H}^{*}<1$ is equal to the smallest of the $\Delta M \leq n-1$ largest ratios $V_{i} /\left[Q\left(a_{i}+\Delta x_{i}\right)\right]$. Noting U_{h} - the number of votes cast for the party with such ratio, the expression (12) can be presented as

$$
I_{H}^{*}=\left\{\begin{array}{c}
1, \text { if } a_{1}+a_{2}+\cdots a_{n}=M \\
U_{k} /\left[Q\left(a_{k}+\Delta x_{k}\right)\right], \text { otherwise } .
\end{array}\right.
$$

In a similar mode, it is proved that the minimization of disproportionality: 1) in sense of Sainte-Laguë index (5) and of Standard deviation index
[3], is assured by the same algorithm as used for the d'Hondt index, with the difference that the last ΔM seats are allocated one by one to each of the first K parties with the largest ratios $V_{i}\left[2\left(a_{i}+\Delta x_{i}-1\right)+1\right]$, where $\left.\Delta x_{i} \geq 1 ; 2\right)$ in sense of Rae [1], Loosemore-Handby [1], Rose [1], Grofman and Relative deviation [3] indices, is assured by the method of largest remainder with the Hare quota. So, the minimization of disproportionality, in sense of investigated 10 indices, is assured by the following generalized algorithm:

1. $x_{i}:=a_{i}=\left[V_{i} / Q\right], i=\overline{1, n}$. Determining the number $\Delta M:=M-\left(a_{1}+\right.$ $a_{2}+\ldots+a_{n}$) of still undistributed seats. If $\Delta M=0$, than the allocation of seats is finished and it is a proportional one.
2. One by one seat, from the ΔM still undistributed ones, is additionally allocated: to the first ΔM parties with the largest remainders ΔV_{i}, when using the Gallagher, Grofman, Lijphart, Loosemore-Handby, Rae, Rose, or Relative deviation indices; to the first $K \leq \Delta M$ parties with the largest ratios $V_{i} /\left[2\left(a_{i}+\right.\right.$ $\left.\Delta x_{i}-1\right)+1$], when using the Sainte-Laguë or Standard deviation indices, or ratios $V_{i} /\left[\left(a_{i}+\Delta x_{i}\right)\right]$, when using the d'Hondt index, where $\Delta x_{i} \geq 1$. Obtained representation is, however, nonproportional, but it guarantees, for the seven of the first group of indices, that to each party it will allocate a number of seats that will exceed or lose the proportion of its votes cast by less than one seat.
The difference of this algorithm from the ones, used by d'Hondt and Sainte-Laguë methods, is that it don't need the consecutive dividing of V_{i} to divisors $u_{i}+1\left(u_{i}=0,1,2, \ldots\right)$, as in case of the d'Hondt method, or to divisors $2 u_{i}+1\left(u_{i}=0,1,2, \ldots\right)$, as in case of the Sainte-Laguë method, and the solution is obtained after a considerably smaller number of steps.

4 Conclusion

The proposed generalized algorithm for the minimization of disproportionality, when allocating seats in RPL elections using Sainte-Laguë, d'Hondt, Gallagher, Lijphart or Relative deviation indices, is considerably reducing the needed number of steps if compare to Sainte-Laguë or d'Hondt methods.

References

[1] M. Gallagher. Proportionality, Disproportionality and Electoral Systems. Electoral Studies, vol. 10, no 1 (1991), pp. 33-51.
[2] A. Lijphart. Electoral Systems and Party Systems. Oxford University Press, 1994.
[3] I. Bolun. Seats allocation in party-list elections. Economica, no 2(76) (2011).
Ion Bolun,
Academy of Economic Studies of Moldova, E-mail: bolun@ ase.md

