
Proceedings of the Workshop on Intelligent Information Systems

WIIS2021, October 14-15, 2021, Chisinau, Republic of Moldova

© 2021 by Ioachim Drugus, Tudor Bumbu, Victoria Bobicev, Victor Didic, Alina

Burduja, Alexandr Petrachi, Victoria Alexei

Punctilog: a New Method of

Sentence Structure Representation

Ioachim Drugus, Tudor Bumbu, Victoria Bobicev, Victor Didic,

Alina Burduja, Alexandr Petrachi, Victoria Alexei

Abstract

We present the experiments on sentence syntactic structure re-

codification from dependency grammar to punctilog, a novel

methodology of sentence structure representation. Our goal is to

create a corpus annotated using this convention; to this end, we re-

use the corpora already created by the Universal Dependency

project. Several algorithms had been developed for the

transformation. We discuss the obtained structures and frame the

necessary steps to improve the results.

Keywords: computational linguistics, sentence structure,

dependency grammar, punctilog.

1. Introduction

Over the years, numerous methodologies have been used to represent

sentence structures in computational linguistics. All these methodologies

aimed to capture the most important component: the meaning of the

sentence. Some of them were used largely in various projects; some are

less known in the research community.

In this paper, we present the work on punctilog, yet another theory of

sentence structure representation. Our goal is to create a corpus annotated

using this convention; we plan to use the corpora already created by the

Universal Dependency project. We developed several algorithms for the

transformation and tested them on a small subset of the Romanian corpus.

The results of the algorithms are quite different; we discuss the obtained

structures and the possible ways to improve the results.

118

Ioachim Drugus, et al.

The rest of the paper is organized in the following sections: Section 2

introduces our motivation; the novel methodology named punctilog is

described in Section 3; universal dependencies project is presented in

Section 4; the proposed re-annotation algorithms are introduced in Section

5; Section 6 presents and analyses the obtained results; Section 7

concludes with a discussion and future work.

2. Motivation

Since the appearance of Computational Linguistics, multiple

methodologies have been proposed for the representation of the sentence

structure starting with the famous Chomsky grammars [1], tree adjoining

grammar [11], link grammar [12], head-driven grammar [10], dependency

grammar [3], and others. All developed methodologies had one common

problem: they failed to capture the meaning of the text. This work aims to

develop a formalism that will help to capture and represent the meaning of

a sentence in a logical way.

3. Punctilog

An annotation symbolism referenced as “Punctuation Markup Language”

with the abbreviation “PML”, was introduced in [6]. However, there is yet

another symbolism “Prague markup language” [8] competing for the

abbreviation “PML”, and there are also other uses of this abbreviation in

domains that are far from linguistics. Therefore, a new term “Punctilog” is

introduced for the symbolism described in [6]; this term is alternatively

used in the paper. The term “punctuation markup language” is still used

for the class of all such markup languages but the “PML” acronym is

being avoided. Punctilog is one of the markup languages of this class, the

one specified in [6], and there can be currently or emerge later many other

languages of this class.

The Punctilog markup language consistently uses several punctuation

marks according to the defined strict semantics and provides an extension

mechanism that allows adding to the language new annotation elements

by specifying their semantics according to the format prescribed by the

extension mechanism. Since the time when mathematical discourse

started making part of the discourses in natural languages, the punctuation

marks used by natural languages started being treated as a system that is

119

Punctilog

extending over time and that needs to be managed. The expected uses of

Punctilog are:

(a) To serve as a symbolism for marking up various meanings of

expressions in a text;

(b) To assist in the management of the punctuation systems of various

languages.

A short account of Punctilog can be given by the example below

taken from [6] of a sentence and its Punctilog annotation, which uses all

Punctilog’s punctuation marks:

„Let’s go swimming!” called Ion Chistruiatu, but his team, Gicu and

Mihai, was up to it already.

([Let’s go swimming!] :((called: (Ion ::Chistruiatu))), (((his: <team>):

<Gicu, Mihai>) :(((was :<up to>): it) :already))

There are three bracket types used for Punctilog annotation. Square

brackets ‘[‘, ‘]’ also called “hard brackets” are used to indicate “direct

speech”. Angle brackets ‘<’, ‘>’ also called “chevrons” are used to

indicate an “individual”. Round brackets, also called “parentheses”, and in

this paper also called “soft brackets” are used to indicate a “constituent”.

The round brackets, the parentheses, are used in Punctilog annotation

in order to visualize the constituent structure of the sentence [7]. A text

may be “ambiguous”, i.e. it may be treated as having several

interpretations and, accordingly, several constituent structures. To

disambiguate a text means to arrange the parentheses according to a

certain pattern, a “parenthetical pattern”. The term “soft brackets” sounds

like an appropriate synonym for the Punctilog’s parentheses since these

can be arranged and rearranged in different manners to obtain many

parenthetical patterns and to choose one or several which are considered

the most correct.

A pair of parentheses correctly inserted in a text partially

disambiguates the text. Obviously, for full disambiguation, the

parentheses should be arranged in such a manner that each pair of

balanced parentheses comprise a pair of constituents. The expression “(x

120

Ioachim Drugus, et al.

y)” where x and y are constituents can be treated as a binary operation. In

Punctilog, this operation is called association operation.

4. Universal Dependencies

Universal Dependencies
1
 is one of the largest current projects dedicated to

syntactic analysis and creation of the treebanks for multiple languages [2].

Its initial aim was the development of the consistent treebank annotation

for many languages, intending to facilitate multilingual parser

development and cross-lingual learning. The annotation scheme is based

on an evolution of Stanford universal dependencies [3] and Google

universal part-of-speech tags [4]. During the last years, multiple

researchers joined the project and 202 treebanks in this convention for

114 languages have been released by May 2021 [5].

The annotation is coded in conllu format
2
. This format organizes the

whole text by a word per line; each word is accompanied by its id, lemma,

part of speech code, the id of a headword, and dependency link label.

Figure 1 presents the graphical visualization of the dependency annotation

created by conllu format viewer
3
.

Figure 1. Graphical representation of the dependency annotation for the

Romanian sentence “Un incendiu exterior nu antrenează explozia

practic instantanee a aproape întregului conținut al ambalajului” (An

external fire does not cause a virtually instantaneous explosion of

almost the entire contents of the package).

5. Description of the Algorithms

There are several important differences between dependency grammar

and punctilog:

1
 https://universaldependencies.org

2
 https://universaldependencies.org/format.html

3
 https://urd2.let.rug.nl/~kleiweg/conllu/

121

Punctilog

- dependency graph connects words as its nodes with dependency

arcs; punctilog forms a tree graph with words as their leaves and

intermediate nodes that connect two constituents;

- dependency format allows n-ary connections when several words

are connected to one headword; punctilog allows connections

only between two elements;

- dependency graph’s arcs are labelled by the type of the syntactic

relation; punctilog’s connections are not named;

- dependency annotation treats punctuation in sentences as tokens

the same as words; punctilog ignores all initial punctuation in the

sentence.

Due to these differences, the transformation from dependency annotation

is not straightforward. Three algorithms have been proposed and

developed for the transformation. First of all, the algorithms removed all

punctuation from the initial sentence. The next steps consist of successive

connections of neighboring words. Each connection forms a constituent

that is treated as a new word and can be connected further with another

word or constituent.

5.1 Algorithm 1

Each word in the sentence with its headword id is extracted from the

conllu format and stored in lists. Then the process of annotation with

parenthesis starts. Every two words are taken in the parentheses if the

word and its head are the next or the following word. The parentheses are

placed repeatedly and the id of the head for the formed constituent is

calculated as an average of the heads of the united words. This is done in

order to be able to more easily know which constituents are closer to each

other.

A while loop is connecting the created constituents to the heads with

the closest id number to the dependency averages until only one

constituent remains.

5.2 Algorithm 2

After removing punctuation, all words with hyphens before or after are

connected with corresponding neighboring words.

Then, connections are performed in two cycles: one from the first

word to the last one and another in reverse order: from the last word to the

first one. For each word connection is performed if its head is a

122

Ioachim Drugus, et al.

neighboring word; the same is applied to the already formed constituents.

All formed constituents keep all id of their components and id of their

heads. The process of connection stops when only one constituent

remains.

5.3 Algorithm 3

This algorithm also connects all words to their neighboring heads to form

the constituents. The difference is that the formed constituents obtain the

id of the head and its connection; the id of the dependent element is lost.

This is why only leaves (words or constituents that are not heads for other

elements) are connected.

The connections are performed in two cycles: The inner one checks

and connects, if possible, each word from the last word to the first one and

the outer one repeats the inner cycle until at least one connection is

performed in the inner cycle and stops when no further connections are

possible.

6. Comparison of the Algorithms’ Results

We had no “gold corpus” annotated absolutely correctly for the algorithm

evaluation; we had to evaluate the algorithm manually. 20 sentences

annotated in the universal dependencies convention were selected for the

evaluation. After its transformation by all three algorithms, we compared

the results. Surprisingly, all three algorithms produced quite different

results and after closer examination, we concluded that no one of these

results was absolutely correct.

Figure 2 presents the same sentence as in Figure 1, but in the form of

a dependency tree created by another conllu viewer
4
. The verb

“antrenează” is still a root and all other words are connected to it. In order

to facilitate the comparison, an online visualization tool for punctilog

format has been developed
5
. Figures 3, 4, 5 present graphical

representations of the punctilog format created by the algorithms 1, 2, 3

respectively.

In the figures, it is seen that all algorithms produced different

structures. All three connected the predicate (nu antrenează) to the subject

4
 https://urd2.let.rug.nl/~kleiweg/conllu/

5
 https://univoc.dev/

123

Punctilog

(Un incendiu exterior) and the complex direct object (explozia practic

instantanee a aproape întregului conținut al ambalajului) was connected

partially. Algorithm 1 connected only the first word of the object

(explozia) to the predicate and the rest of the object was connected apart.

Algorithm 2 also connected only a part of the object (explozia practic

instantanee a aproape) to the predicate and the rest of the subject was

taken apart. Algorithm 3 connected the subject and the predicate and the

complex object was all together. This variant was the most similar to

human judgment. One problem was that in classical structure the object

should be connected to the predicate and only after that the subject and

the predicate should be united. The other problem of the result was the

connections of the complex object elements.

Figure 2. Graphical representation of the universal

dependencies annotation of the same sentence as in Figure 1.

124

Ioachim Drugus, et al.

Figure 3. Graphical representation of the punctilog annotation

produced by Algorithm 1.

Figure 4. Graphical representation of the punctilog annotation

produced by Algorithm 2.

All three algorithms connected this part (explozia practic instantanee a

aproape întregului conținut al ambalajului) in different ways.

After common discussion between the authors the final and most

correct version of the punctilog connections was created; it is presented in

Figure 6. The predicate (nu antrenează) includes the object (explozia

practic instantanee a aproape întregului conținut al ambalajului) and all

this part is connected to the subject (Un incendiu exterior). Complex noun

phrase of the object consists of the main part (explozia practic

instantanee) and the dependent part (a aproape întregului conținut al

ambalajului) which in turn is formed of parts: (a), (aproape întregului)

and (conținut al ambalajului).

125

Punctilog

Figure 5. Graphical representation of the punctilog annotation

produced by Algorithm 3.

Figure 6. Graphical representation of the punctilog annotation

created manually.

7. Discussion and Future Work

As it was discussed in the previous section, we have to modify the

algorithms as all of them made different errors in punctilog connections.

All algorithms used only the information about the links between words

not taking into consideration their morphological and link labels. These

labels can be used to connect correctly determiners, adjectives, and

articles to the nouns in noun groups; verbs with their auxiliary verbs,

adverbs, and particles in verb groups and then to connect formed direct

object to predicate and finally subject to the rest of the sentence.

126

Ioachim Drugus, et al.

Thus, to form correct punctilog constituents, we have to start with the

connections inside classical noun and verb phrases [9]. For noun phrases,

firstly the modifiers such as adverbs and adjectives are connected to the

words they modify; then articles and parts of complex noun phrases. An

example is the complex noun phrase: “explozia practic instantanee a

aproape întregului conținut al ambalajului” (a virtually instantaneous

explosion of almost the entire contents of the package). It is seen in

Figures 1 and 2 how the words are connected in dependency grammar

convention and their parts of speech. Firstly, adverbs are connected to

adjectives, then adjectives to nouns, next articles to the formed groups,

and finally several nouns with their dependent words are connected

together. The order of connections is:

explozia practic instantanee -> explozia (practic instantanee) ->

(explozia (practic instantanee));

a aproape întregului conținut al ambalajului -> a (aproape

întregului) conținut al ambalajului -> a (aproape întregului) conținut (al

ambalajului) -> a (aproape întregului) (conținut (al ambalajului)) -> (a

(aproape întregului) (conținut (al ambalajului))).

Finally, these two parts are connected together. However, there is still

possible ambiguity. The part (a (aproape întregului) (conținut (al

ambalajului))) can be connected as in Figure 6 or as (a ((aproape

întregului) conținut) (al ambalajului)); this version is presented in Figure

7.

Figure 7. Graphical representation of the alternative punctilog

annotation of the complex noun phrase.

127

Punctilog

The methodology described above in this section is connecting the parts

as in Figure 7 as aproape întregului conținut is a noun phrase with the

main noun and al ambalajului is a noun phrase as well. The first word a

with morphological tag det and connection to the first noun conținut is

connected to the first part as well and the structure is slightly different: ((a

((aproape întregului) conținut)) (al ambalajului)). This structure may also

be considered correct.

8. Conclusion

In this paper, ongoing work on the creation of the text corpus annotated

with a novel methodology named punctilog is described. The

methodology aims to represent the sentence's meaning through its

structure. We discuss which structures are appropriate and how to create a

corpus of texts annotated in this convention. We present the experiments

on the re-annotation of universal dependencies Romanian corpus. We

discuss the developed algorithms’ results and our future plans for their

improvement.

References

[1] N. Chomsky. The Logical Structure of Linguistic Theory. Springer, US,

1975, 592 p.

[2] Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav

Goldberg, Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao

Zhang, Oscar Täckström, Claudia Bedini, Núria Bertomeu Castelló, and

Jungmee Lee. Universal Dependency Annotation for Multilingual Parsing.

In: Proceedings of ACL, 2013.

[3] M.-C. de Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter, J. Nivre,

and C.D. Manning. Universal Stanford Dependencies: A cross-linguistic

typology. In: Proceedings of the 9
th

 International Conference on Language

Resources and Evaluation, 2014, pp. 4585-4592.

[4] S. Petrov, D. Das, and R. McDonald. A Universal Part-of-Speech Tagset. In:

Proceedings of the Eighth International Conference on Language Resources

and Evaluation, 2012, pp.2089-2096.

[5] Daniel Zeman, et al. Universal Dependencies 2.8.1, LINDAT/CLARIAH-CZ

digital library at the Institute of Formal and Applied Linguistics (ÚFAL),

Faculty of Mathematics and Physics, Charles University, 2021,

http://hdl.handle.net/11234/1-3687.

128

http://hdl.handle.net/11234/1-3687

Ioachim Drugus, et al.

[6] Ioachim Drugus. PML: A Punctuation Symbolism for Semantic Markup. In:

Proc. of 11
th

 International Conf. “Linguistic Resources and Tools for

Processing the Romanian Language”, 2015, pp.79-92.

[7] Andrew Carnie. Constituent Structure. Oxford University Press; 2nd edition,

2010, 320 pages, ISBN-10: 0199583463.

[8] Jirka Hana and Jan Štěpánek. Prague Markup Language Framework. In:

Proceedings of the Sixth Linguistic Annotation Workshop, Association for

Computational Linguistics, 2012, pp. 12-21.

[9] J. Miller. A critical introduction to syntax. London: Continuum, 2011, 275

pages.

[10] Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar,

Chicago: University of Chicago Press, 1994.

[11] K. Vijay-Shanker and Aravind Joshi. Unification-Based Tree Adjoining

Grammars, 1991. Technical Reports (CIS).

[12] Daniel Sleator and Davy Temperley. Parsing English with a Link Grammar.

In: Third International Workshop on Parsing Technologies, 1993.

Ioachim Drugus
1
, Tudor Bumbu

1, 3
, Victoria Bobicev

2
, Victor Didic

2, 3
, Alina

Burduja
2
, Alexandr Petrachi

2
, Victoria Alexei

2

1
Vladimir Andrunachievici Institute of Mathematics and Computer Science

E-mail: ioachim.drugus@math.md, tudor.bumbu@math.md

2
Technical University of Moldova

E-mail: victoria.bobicev@ia.utm.md, alina.burduja@iis.utm.md,

alexandr.petrachi@iis.utm.md, victoria.lazu@ia.utm.md,

victor.didic@iis.utm.md

3
Est Computer

E-mail: bumbutudor10@gmail.com, victor.didic864@gmail.com

129

mailto:ioachim.drugus@math.md
mailto:alina.burduja@iis.utm.md
mailto:victoria.lazu@ia.utm.md
mailto:bumbutudor10@gmail.com

	14_Drugus_et_al_118_129

