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We develop a strong-coupling approach to investigate the Anderson-Holstein model with strong 
repulsion on impurity centers. We derive the relation between electron propagators and correlation 
functions and prove that for the impurity electrons the latter is identical to the mass operator of the 
conduction electrons. Strong electron-phonon interaction determines formation of polarons with 
heavy clouds of phonons surrounding impurity electrons. We demonstrate the existence of a 
collective excitation mode of these clouds and obtain the dependence of its energy on the 
hybridization of the impurity with band states. Hybridization is shown to cause softening of the 
collective mode and its total suppression at sufficiently large values of the hybridization parameter. 
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1. INTRODUCTION 

Strong correlation effects can occur in metallic systems due to both strong electron-electron 
interactions and strong electron-phonon coupling, including their interplay as well [1]. 

In many-body systems strongly correlated electrons are also strongly coupled to the lattice vibrations, 
for example in V2O3 [2, 3], manganites [4], and fullerides [5]. The strong electron-electron interactions can 
be described by the Hubbard [6] and Anderson [7] models. The Holstein model [8] has been used to examine 
electron-phonon interactions. The Anderson-Holstein model includes both types of interaction. 

The advances in the field of molecular electronics have revived the interest to the problem of electron-
phonon interaction because electron-vibrational coupling within the molecule is important for understanding 
the properties of such devices. From the theoretical point of view it is the problem of small polaron discussed 
by Holstein [8]. 

The Hamiltonian of the Anderson-Holstein impurity model has the following form  

- ,el ph hyb el phH H H H H= + + + 0
0( ) ( ) ,el fH C C f f U n n+ +

σ σ σ σ ↑ ↓
σ σ

= ε + ε +∑ ∑k k
k
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1 ( ),
2

q a a+= + ( )
2
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N

+ +
σ σ σ σ

σ
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 ,el phH qn− = g n nσ
σ

= ∑ , n f f+
σ σ σ= , 

(1) 

where q and p are local coordinate and momentum of the optical phonons, ω0  their frequency, 

( )a a+ , ( )C C+
σ σk k , and ( )f f +

σ σ annihilation (creation) operators of phonons, conduction, and impurity 

electrons, correspondingly. ( )ε k  is the kinetic energy of conduction electrons and 0
fε  is the local impurity 

energy, which are calculated from the chemical potential 0µ  of the system: 0( ) ( )ε = ξ − µk k , 
0 0

0f fε = ε − µ . 0U  is the on site Coulomb repulsion of impurity electrons with opposite spins, Vk  is the 
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matrix element of hybridization, N is the number of lattice sites, and g  is the constant of electron-phonon 
interaction. Both quantities, 0U  and g , are far too large to be treated by perturbation theory and should be 
included in the zero-th order Hamiltonian 0 el phH H H= + . 
To eliminate the linear q-term of Hamiltonian we use the Lang-Firsov [9] transformation  

e eS SH H −=� , iS np= − g , 
0

=
ω=
gg . (2) 

The transformed impurity operators become: ie e eS S pf f f−
σ σ σ= =� g , ie pf f+ + −

σ σ=� g , while conduction 

electron operators remain unchanged. As a result we obtain 0 int ,H H H= +� where  

0 0
1( ) ( )
2fH C C n Un n a a+ +
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σ σ

= ε + ε + + ω +∑ ∑ =k k
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k  (3) 
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Here 
0 ,f fε = ε − µ 0 0 ,µ = µ + α ω= 0 02 ,U U= − α ω=

2

2
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g
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1b C V
Nσ σ= ∑ k k

k
, *1 .b V C

N
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(5) 

The operator ( )b bσ σ
+ represents a local conduction electron and ( )f f +

σ σ
� �  stands for an impurity electron, 

surrounded by phonons, i.e., a polaron. 
In the perturbation approach developed below we shall use the generalized Wick theorem proposed in 

[10-15] for strongly correlated systems. The generalized theorem will be employed for the impurity 
subsystem and the standard theorem will be used for conduction electrons and optical phonons. 

In section 2 we introduce the finite temperature Matsubara Green’s functions for the conduction and 
impurity electrons in the interaction representation. In Section 3 we analyze the dynamics of phonon clouds. 
In section 4 we provide explicit examples of diagram calculation for the full propagators and section 5 
contains the discussion of the results and conclusions. 

2. DIAGRAMMATIC APPROACH  

The Matsubara renormalized Green’s functions of conduction and impurity electrons in interaction 
representation are defined as follows:  

0 0

0

( | ) ( ) ( ) ( ) , ( | ) ( ) ( ) ( ) ,

( | ) ( ) ( ) ( ) ,

c c

e

c

p

G Tb b U Tf f U
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′ ′σ σ σ σ

′σ σ

′ ′ ′ ′ ′ ′στ σ τ = − τ τ β στ σ τ = − τ τ β

′ ′ ′στ σ τ = − τ τ β��

g

g
 (6) 

where ,τ  ′τ stand for the imaginary time with 0 < τ < β , were β  is the inverse temperature of the system. 

Here T is the time ordering operator. Statistical averaging  
0

c…  is done with the zero-th order density 

operator of the grand canonical ensemble 
0

0

e
Tr e

H

H

−β

−β
. The superscript c in (6) indicates that only connected 

diagrams are taken into account; eg  and pg  are electron and polaron propagators. The evolution operator 

( )U β  is defined as usual: int
0

( ) exp( ( ) d ).U T H
β

β = − τ τ∫  
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Besides of the normal Green’s functions (6) we will also consider the anomalous Green’s functions 
describing the superconducting pairing correlations 

0 0
( | ) ( ) ( ) ( ) , ( | ) ( ) ( ) ( ) .

cc
pF Tb b U f Tf f U′ ′σ −σ σ −σ′ ′ ′ ′ ′ ′στ −σ τ = − τ τ β στ −σ τ = − τ τ β� �   (7) 

In addition, there exist also propagators of the phonon clouds (see paper [14]) 

1 2 1 2 1 2 1 20 0

1 2 3 4 1 2 3 4 0

( ) exp[i (p(τ ) p(τ ))] ( ) , ( ) exp[i (p(τ ) + p(τ ))] ( ) ,

( | ) exp[i (p(τ ) + p(τ ) p(τ ) p(τ ))] ( ) .

c c

c

T U T U

T U

Φ τ − τ = − β ϕ τ − τ = β

Φ τ τ τ τ = − − β

g g

g
  (8) 

We henceforth assume that the system is in the paramagnetic state. The Fourier representation of the 
phonon cloud propagator can then be obtained using Laplace approximation. In the strong-coupling limit, 

1α� , the propagator takes the following form [15,16] 

2 2

2
(i ) ,c

c

ω
Φ Ω =

Ω + ω c 0ω = αω .  (9) 

This expression describes the harmonic propagator of the collective mode of phonons belonging to the 
polaron cloud and having the collective frequency cω . Thus, Eq. (9) defines the concept of free collective 
oscillations of the phonon clouds surrounding the polarons. 

The Laplace approximation for the strong-coupling limit 1α�  also serves to prove the relation: 

0 1 2 3 4 0 1 3 0 2 4 0 1 4 0 2 3( | ) ( | ) ( | ) ( | ) ( | )Φ τ τ τ τ ≈ Φ τ τ Φ τ τ + Φ τ τ Φ τ τ .  (10) 

This equation and its generalization for the many time arguments are considered as the Wick theorem 
for phonon clouds in the strong coupling polaron regime. 

3. THE DYNAMICS OF PHONON CLOUDS 

We will now consider the renormalization of the phonon cloud propagators by the hybridization of 
impurity and band electron states. In the second and fourth order of perturbation theory we obtain the 
contributions shown in Fig. 1.  

 

 
Fig. 1 – Renormalization of the phonon clouds contributions. Thin solid lines correspond to conduction electron propagators and 

dashed lines correspond to impurity electron propagators. The diagrams represent the simplest contributions of the second and fourth 
order of perturbation theory. The loops correspond to the simplest polarization operators. 

The following expressions represent the contribution of some of the diagrams shown in the above figure:  
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∫∫
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 (11) 

where  

 s s
2 1 2 2 1 2 1 2 2 1 2 1 2 2 10 00 0 0 0
(1 2) , (1 2) , (1 2) .Tb b Tf f Tb b Tf f Tb b Tf fΠ − = − Π − = Π − =  (12) 

In the normal state of the system all the anomalous Green’s functions are equal to zero and we set to 
zero also the vanishing propagators ϕ  and ϕ . 
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The diagram series for the normal propagator ( )′Φ τ − τ  can be put in the form of Dyson equation  

(0) (0) (0)
1 2 1 1 2 2( ) ( ) d d ( ) ( ) ( )′ ′ ′Φ τ − τ = Φ τ − τ + τ τ Φ τ − τ Π τ − τ Φ τ − τ∫∫ ,  (13) 

where ( )Π τ  is the full polarization operator. 
(0)
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− Φ Ω Π Ω Φ Ω −Π Ω
  (14) 

In the Fourier representation we have  
Using the expression (9) we then find  
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2
( )

2 ( )
c

c c

i
i

ω
Φ Ω =

Ω + ω − ω Π Ω
.  (15) 

The pole of this equation determines the renormalization of the collective phonon frequency cω : 

2 2 2 ( ) 0c cE E− ω + ω Π = .  (16) 

The simplest electron Green’s functions have the form ( )σ = −σ : 
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These functions allow to find the lowest order polarization operator of the normal state: 
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2
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  (18) 

where ( )Eρ  is the density of states. From the equation (16), for the case T = 0 and assuming a flat density of 

states 
1, | |1( )
0, | |2

E W
E

E WW
<

ρ =  >
 , we can determine the dependence of the collective mode energy E on the 

hybridization parameter V (W is the half bandwidth). The results of numerical calculations are presented in Fig. 2.  

 
Fig. 2 – Energy of the collective mode vs hybridization V, for different band widths W = 0.5eV (continuous line) and W = 1eV  

(dashed line). The other parameters are: ωc = 0.075 eV, U = 5.85 eV, and εf  = –0.095 eV. 
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The important conclusion which follows from the behavior shown in Fig. 2 is that the collective mode is 
suppressed by hybridization.  

4. POLARON GREEN’S FUNCTIONS 

We denote by Λ the normal correlation function and by Y and Y  the anomalous quantities. Statistical 
averages of a product of interaction operators can be divided in three groups: one is an average of products of 
conduction electron operators ,b b +

σ σ  which is carried out with the help of the standard Wick theorem. The 
second group is composed of products of localized electron operators ,f f +

σ σ  and such averages of 
correlated electrons require the generalized Wick theorem [15]. The third group of operators is formed by 
phonon cloud operators and for this group it is necessary to use a special relation (10).  

Diagrammatic equations for polaron Green’s functions of impurity electrons are represented in Fig. 3. 
The general form includes the anomalous zero-th order Green’s functions of conduction electrons 0F  

and 0F , which vanish in the normal state: 
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 (19) 

The examples of normal and anomalous correlation function are shown in Fig. 4. Solution of these 
equations has the form:  
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p
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p
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 (20) 

 
Fig. 3 – Dyson type equations for full Green’s functions of impurity electrons. 
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Fig. 4 – The examples of correlation functions in first order of perturbation theory. The rectangles depict G2

(irr). 

The system of equations for the renormalized Green’s functions G, F, and F  of conduction electrons 
can be obtained in a similar way. Their diagrammatic representation is shown in Fig. 5.  
 

 
Fig. 5 – Renormalized Green’s functions of the conduction electrons. Thin solid lines are zero-order functions. The double thin lines 

represent the renormalized functions and Σ, Ξ, and Ξ  are the mass operators of the conduction electrons. 

Solutions of the whole set of equations are determined by the normal Σ and by the two anomalous Ξ 
and Ξ  mass operators, which we identify below as correlation functions of localized electrons:  

( , ) ( , ), ( , ) ( , ), ( , ) ( , ).Y Y′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′Σ στ σ τ = Λ στ σ τ Ξ στ σ τ = στ σ τ Ξ στ σ τ = στ σ τ  (21) 

Thus, the correlation functions Λ , Y , and Y  of the Dyson type equation for localized electrons 
coincide with the mass operators of the Dyson equations for conduction electrons.  

5. CONCLUSIONS 

We have developed a diagrammatic approach for the Anderson-Holstein model in the case of strong 
Coulomb intra-atomic interaction of impurity electrons and strong electron-phonon interaction of the 
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impurity electrons with optical phonons. Both interactions are taken into account as the main part of the 
Hamiltonian. 

Dynamics of the phonon clouds of polarons has been investigated and the renormalization of their 
collective frequency has been described in detail. We have proved that at zero temperature hybridization 
causes a continuous softening of the collective mode. 

We have formulated the system of Dyson-type equations which determines the relation between the 
full propagators of impurity electrons and their correlation functions. We have also found the system of 
Dyson equations for the full Green’s functions of conduction electrons and for their mass operators.  As a 
consequence of this analysis we have proven the identity between the impurity correlation functions and the 
mass operators of the conduction electrons. 
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