On skew polynomial rings and some related rings

Elena Cojuhari, Barry Gardner

Abstract

For a ring A with identity and a monoid G we consider "monoid rings" with respect to G over A where the multiplication $(a \cdot x)(b \cdot y)(a, b \in A, x, y \in G)$ is determined by a monoid homomorphism $G \rightarrow \operatorname{End}(A)$. Examples include various skew polynomial rings. There is also a link to $\mathbb{Z}_{2}-$ graded rings.

Keywords: Derivation, higher derivation, ring, monoid algebra.

A system called a D-structure in [3] and introduced in [2] consists of a ring A with identity 1 , a monoid G with identity e and mappings $\sigma_{x, y}: A \rightarrow A$ for $x, y \in G$ satisfying the following condition:

Condition (A)

(0) For each $x \in G$ and $a \in A$, we have $\sigma_{x, y}(a)=0$ for almost all $y \in G$.
(i) Each $\sigma_{x, y}$ is an additive endomorphism.
(ii) $\sigma_{x, y}(a b)=\sum_{z \in G} \sigma_{x, z}(a) \sigma_{z, y}(b)$.
(iii) $\sigma_{x y, z}=\sum_{u v=z} \sigma_{x, u} \circ \sigma_{y, v}$.
(iv $\left.{ }_{1}\right) \quad \sigma_{x, y}(1)=0$ if $x \neq y ; \quad\left(\mathrm{iv}_{2}\right) \quad \sigma_{x, x}(1)=1 ;$
(iv3) $\quad \sigma_{e, x}(a)=0$ if $x \neq e ; \quad\left(\mathrm{iv}_{4}\right) \quad \sigma_{e, e}(a)=a$.
In [2] a sort of "skew" or "twisted" monoid ring associated with A and G was constructed by means of the mappings $\sigma_{x, y}$. Examples include group rings, skew polynomial rings, the Weyl algebras and other related ones. There are also connections with gradings of rings [3].
(C) 2014 by E. Cojuhari, B. Gardner

One way of getting a D-structure is from a monoid homomorphism $G \rightarrow \operatorname{End}(A):$ we define

$$
\sigma_{x, y}=\left\{\begin{array}{lll}
\sigma(x) & \text { if } & x=y \\
0 & \text { if } & x \neq y
\end{array}\right.
$$

There is also a converse.
Theorem 1. For a monoid G and a unital ring A, a D-structure has all $\sigma_{x, y}$ for $x \neq y$ equal to the zero map if and only if there is a homomorphism $\sigma: G \rightarrow \operatorname{End}(A)$ with $\sigma_{x, x}=\sigma(x)$ for all $x \in G$.

The modified monoid ring $A<G ; \sigma>$ in this case has the multiplication

$$
(a \cdot x)(b \cdot y)=(a \sigma(x)(b)) \cdot x y
$$

for $a, b \in A, x, y \in G$, rather than $(a \cdot x)(b \cdot y)=a b \cdot x y$ as in the usual monoid ring $A[G]$.

Proposition 1. If G^{\prime} is another monoid, $\sigma^{\prime}: G^{\prime} \rightarrow \operatorname{End}(A)$ is a monoid homomorphism and $\varphi: G \rightarrow G^{\prime}$ is a monoid homomorphism, then there is a unique ring homomorphism

$$
\psi: A<G ; \sigma>\longrightarrow A<G^{\prime} ; \sigma^{\prime}>
$$

such that $\psi(a x)=a \varphi(x)$ for all $a \in A, x \in G$.
Thus in a suitable sense the correspondence $(G ; \sigma) \rightarrow A<G^{\prime} ; \sigma^{\prime}>$ is functorial.

For any endomorphism f of A there is a homomorphism from the free monoid $\langle x\rangle$ on a single generator to $\operatorname{End}(A)$ given by $x^{n} \mapsto f^{n}$. The associated monoid ring in this case is a skew polynomial ring of some kind.

Example 1. Let G be the infinite cyclic monoid

$$
\left\{x^{0}(=e), x^{1}, x^{2}, \ldots, x^{n}, \ldots\right\},
$$

R a ring with identity, $R[t]$ the usual polynomial ring.

We define $\sigma: G \rightarrow E n d R[t]$ by $\sigma\left(x^{n}\right)(p(t))=p\left(t^{2^{n}}\right)$. Then $\sigma\left(x^{n}\right)$ as defined is indeed a ring endomorphism, and σ is a monoid homomorphism. Let

$$
\sigma_{m n}=\sigma_{x^{m}, x^{n}}=\left\{\begin{array}{lll}
\sigma\left(x^{n}\right) & \text { if } \quad m=n, \\
0 & \text { if } \quad m \neq n .
\end{array}\right.
$$

In $R[t]\langle G ; \sigma\rangle$ we have $x t=x 1 \cdot t x^{0}=1 \sigma_{11}(t) x x^{0}=t^{2} x$.
Thus we get Example 2.5, [3] by a simpler construction.
Example 2. Similarly if K is a field of prime characteristic p, and for our endomorphism we take the one for which $a \mapsto a^{p}$ for all $a \in K$, then $K<G ; \sigma>$ is the Frobenius polynomial ring in x over K in which $x a=a^{p} x$ for all $a \in K$.

In these examples we have D-structures essentially defined by individual endomorphisms. There is another way to get D-structures from endomorphisms. In [2] it was shown that if f is a homomorphism, δ an $(f, i d)$ - derivation of A, i.e. $\delta(a b)=\delta(a) b+f(a) \delta(b)$, and $\delta \circ f=f \circ \delta$, then we get a D-structure using the free monoid on x and defining $\sigma_{x^{m} x^{n}}=\binom{n}{m} \delta^{n-m} \circ f^{m}$ for $n \geq m$ and all others to be zero. (If $\delta \circ f \neq f \circ \delta$ there is a more complicated D-structure.)

Proposition 2. Let $f: A \rightarrow A$ be an endomorphism, and let $\delta(a)=$ $a-f(a)$ for all $a \in A$. Then δ is an $(f, i d)$ and an $(i d, f)$ derivation and $\delta \circ f=f \circ \delta$.

As above we get a D-structure from f and δ and hence, in effect, from f. As a simple illustration we have

Example 3. In \mathbb{C}, if $f(x+y i)=x-y i$, then $\delta(x+y i)=2 y i$. Let us note three things about this elementary example.
(1) $f^{2}=i d$;
(2) $\frac{1}{2} \delta$ exists and is also an $(f, i d)$ and an $(i d, f)$ derivation which commutes with f and
(3) \mathbb{C} is graded by \mathbb{Z}_{2}.

More generally we have:
Theorem 2. The following conditions are equivalent for a ring A.
(i) A has an automorphism f of order ≤ 2 such that $a-f(a) \in 2 A$
for all $a \in A$.
(ii) A has an automorphism f of order ≤ 2 and an idempotent $(f, i d)$ and $(i d, f)$ derivation δ such that $a=f(a)+2 \delta(a)$ for all $a \in A$.
(iii) A is $\mathbb{Z}_{2}-$ graded.

The following special cases have been proved by Yu. A. Bahturin and M. M. Parmenter:
(1) If $2 A=0$, then $f=i d$ and $\mathbb{Z}_{2}-$ gradings correspond to idempotent derivations. [4]
(2) If A is 2 - torsion free, then \mathbb{Z}_{2} - gradings correspond to automorphisms f of order ≤ 2 such that $a-f(a) \in 2 A$ for all $a \in A$ [1]. Full details of our results will appear elsewhere.

References

[1] Yu.A. Bahturin, M.M. Parmenter. Group gradings on integral group rings, in: Groups, Rings and Group Rings, Lecture Notes in Pure and Applied Mathematics, 248 (eds. A. Giambruno, C. Polcino Milies, S. K. Sehgal) (Chapman \& Hall/CRC, Boca Raton, FL, 2006), pp. 25-32.
[2] E. Cojuhari. Monoid algebras over non-commutative rings, Int. Electron. J. Algebra, 2 (2007), pp. 28-53.
[3] E.P. Cojuhari, B.J. Gardner. Generalized higher derivations, Bull. Aust. Math. Soc. v. 86 (2012), pp. 266-281.
[4] M. M. Parmenter, personal communication.

Elena Cojuhari ${ }^{1}$, Barry Gardner ${ }^{2}$
${ }^{1}$ Institute of Mathematics and Computer Science \&
Department of Mathematics, Technical University of Moldova,
Email: cojuhari_e@mail.utm.md
${ }^{2}$ Discipline of Mathematics, University of Tasmania, Email: Barry.Gardner@utas.edu.au

