S1-1.4 Electrical Characterization of Individual Boron Nitride Nanowall Structures

V. Postica¹, F. Schütt², C. Lupan¹, H. Krüger², R. Adelung² and O. Lupan^{1,2} ¹ Center for Nanotechnology and Nanosensors, Department of Microelectronics and Biomedical Engineering, Technical University of Moldova, Chisinau, Republic of Moldova ² Institute for Materials Science, Chair for Functional Nanomaterials, Faculty of Engineering, Kiel, Germany

In this work, the individual hexagonal boron nitride (h-BN) microtubular structures with different diameter (ranging from ≈ 0.2 to $\approx 2.5 \ \mu$ m) and a wall thickness below 25 nm were investigated for the first time by integration on SiO2/Si substrate using a method based on focused ion beam deposition (FIB/SEM). The current-voltage (I-V) measurements were carried out in from a bias of - 40 V to + 40 V and in a temperature range from 25 to 100 °C. All fabricated devices showed excellent insulating properties and the resistance of $\approx 111 \ G\Omega$ was calculated, which was attributed mainly to the top SiO2 layer of the substrate measured without h-BN. The obtained results elucidate the excellent potential of the boron nitride microtubular structures with nanowalls to be used as high-quality shielding materials of other nano- and microstructures for application in nanoelectronics, nanophotonics and power electronics, where a relatively wide range of operating temperature is necessary.