SURFACE MORPHOLOGY AND STRENGTH BEHAVIOUR OF VITREOUS FILMS DOPED BY NEODYMIUM

D.Grabco^{1*}, O. Shikimaka¹, M. Elisa², B. Sava², L. Boroica³, E. Harea¹, C. Pyrtsac¹, A. Prisacaru¹, Z. Danitsa¹, I. Feraru², D. Ursu²

¹Institute of Applied Physics ASM, Chisinau, Moldova, ²National Institute of R&D for Optoelectronics INOE 2000, Bucharest-Magurele, Romania ³National Institute for Laser, Plasma & Radiation Physics, Bucharest-Magurele, Romania *E-mail: <u>grabco@phys.asm.md</u>

The morphology and microstructure of silicophosphate films, undoped and doped by neodymium, were considered in the work. Strength characteristics (Young modulus and hardness) both the SiO₂-P₂O₅-Nd₂O₃ and SiO₂-P₂O₅ films under P_{max}=10 mN were also studied. In addition to that, the investigation of the soda-lime glass (SLG) substrate and as a whole of the composite structures SiO₂-P₂O₅-Nd₂O₃/SLG and SiO₂-P₂O₅/SLG (P_{max}=10, 100 and 900 mN) was carried out. A specific microstructure, composed of basic film on which the structural units of small dimensions, about 0.1-0.2 µm, quasi-uniformly distributed, together with roundly structural units from some to tens micrometers, was detected on the SiO₂-P₂O₅-Nd₂O₃ and SiO₂-P₂O₅-Nd₂O₅ film surfaces. (Fig.1).

Fig.1. Surface microstructure of the SiO_2 - P_2O_5 - Nd_2O_3 film deposited on surface of sodalime glass (SLG)

ibited a high time-stability as a result of the films and composite structures possess the

The film surfa long-term rest

strength properties of high quality (Table 1).

Table. 1. Values of Young modulus (E) and hardness (H) of composite structures	
SiO ₂ -P ₂ O ₅ -Nd ₂ O ₃ /SLG, SiO ₂ -P ₂ O ₅ /SLG and substrate SLG	

Nr.	Sample	Young modulus, E, GPa			Hardness, H, GPa		
		10 mN	100 mN	900 mN	10 mN	100 mN	900 mN
1	SiO ₂ -P ₂ O ₅ -Nd ₂ O ₃ /SLG	52 ±7,0	58,2 ±7,0	73,3 ±6,6	3,0 ±0,4	4,7 ±1,2	6,3 ±0,3
2	SiO ₂ -P ₂ O ₅ /SLG	55,4 ±3,3	46,3 ±4,2	39,6 ±1,9	3,9 ±0,9	4,1 ±0,4	4,4 ±0,4
3	SLG	70,8 ±5,2	65,3 ±3,1	62,3 ±4,0	7,8 ±0,4	6,2 ±0,4	5,4 ±0,3

The SiO₂-P₂O₅ films demonstrated quite good adhesive behavior. At the same time less cohesion strength 'film-substrate' was revealed for the composite structure SiO₂-P₂O₅-Nd₂O₃/SLG. A further research will be directed at the improvement of the adhesive behavior of structure under study.