
A formal approach for identifying assurance
deficits in unmanned aerial vehicle software

Adrian Groza†, Ioan Alfred Letia†, Anca Goron† and Sergiu Zaporojan‡

†Department of Computer Science
Technical University of Cluj-Napoca, Cluj-Napoca, Romania
Email: {Adrian.Groza,Letia,Anca.Goron}@cs.utcluj.ro

‡ Department of Computer Science
Technical University of Moldova, Chisinau, Moldova

Email: zaporojan@mail.utm.md

Abstract. While formal methods have proved to be unfeasible for large
scale systems, argument-based safety cases offer a plausible alternative
basis for certification of critical software. Our proposed method for in-
creasing safety combines formal methods with argumentation-based rea-
soning. In a first step, we provide a formal representation of the the
argumentative-based Goal Structuring Notation (GSN) standard used in
industry. In a second step, our solution exploits reasoning in description
logic to identify assurance deficits in the GSN model. The identified flaws
are given to a hybrid logic-based model checker to be validated against a
Kripke model. The method is illustrated for an unmanned aerial vehicle
software, with reasoning performed in RacerPro engine and the HLMC
model checker based on hybrid logic.

Keywords: safety cases, argumentation, description logic, hybrid logic

1 Introduction

Assuring safety in complex technical systems is a crucial issue [6] in several crit-
ical applications like air traffic control or medical devices. Safety assurance and
compliance to safety standards such as DO-178B [10] may prove to be a real
challenge when we deal with adaptive systems, which we consider with continu-
ous changes and without a strict behavioral model. Traditional methods, which
are mainly based on previous experiences and lessons learned from other sys-
tems are not effective in this case. Argument-based safety cases offer a plausible
alternative basis for certification in these fast-moving fields [10].

Goal Structuring Notation (GSN) is a graphical notation for structured ar-
guments used in safety applications [7]. GSN diagrams depict how individual
goals are supported by specific claims and how these claims or sub-goals are
supported by evidence. A GSN diagram consists of the following nodes: achieved
goals, not achieved goals, context, strategy, justification, assumption, validated
evidence and not validated evidence. The nodes are connected by different sup-
porting links like: has-inference or has-evidence. To support automatic reasoning
on safety cases, we formalise the GSN standard in DL.



Our solution exploits reasoning in description logic to identify assurance
deficits in the GSN model. The identified flaws are given to a hybrid logic-based
model checker to be validated in a given Kripke structure. All formulas were
verified using the Hybrid Logic Model Checker (HLMC) [5] extended to include
Next, Future and Until operators, while the reasoning in Description Logic (DL)
was performed on RacerPro [8].

2 System Architecture

GSN model

GSN ABox GSN TBox

Hybrid Logics Specifications Kripke model

GSN editor

Hybrid Logic Model Checker

Identifying assurance deficits

RacerPro

Fig. 1. System architecture

The solution is based on three technical instrumentations: (i) the SHI version
of DL, (ii) the GSN standard, and (iii) hybrid logics (HLs). For the syntax,
the semantics and explanation about families of description logics, the reader
is referred to [2]. For the GSN graphical notation the minimum elements are
introduced in section 3, while for a complete description the reader is referred
to [7]. We assume also that the reader is familiar with model checking in temporal
logic. However, in the following we provide specific details about HLs.

Hybrid logics extend temporal logics with special symbols that name individ-
ual states and access states by name [1]. With nominal symbols N = {i1, i2, . . .}
called nominals and Svar = {x1, x2, . . .} called state variables the syntax of hy-
brid logics is ϕ := TL | i | x | @xtϕ |↓ x.ϕ | ∃x.ϕ. With i ∈ N, x ∈ Wvar,
t ∈ N∪Wsym, the set of state symbols Wsym = N∪Wvar, the set of atomic let-
ters Alet = P∪N, and the set of atoms A = P∪N∪Wvar, the operators @, ↓,∃
are called hybrid operators. The semantics of hybrid logic is formalized by the
following statements:

M, g,m |= a iff m ∈ [V, g](a), a ∈ A

M, g,m |= @tϕ iff M, g,m′ |= ϕ, where [V, g](t) = {m′}, t ∈ Wsym

M, g, w |=↓ x.ϕ iff M, gxm, w |= ϕ
M, g,m |= ∃x.ϕ iff there is m′ ∈ M such that M, gxm′ , w |= ϕ


