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Abstract

Using the reviewed Riemann-Liouville fractional derivative we de-

fine the bundle
αk

E = Oscαk(M) and highlight geometrical structures
with a geometrical character. Also, we introduce the fractional oscu-
lator Lagrange space of k order and the main structures on it. The
results are applied at the k order fractional prolongation of Lagrange,
Finsler and Riemann fractional structures.

Mathematics Subject Classification: 26A33, 53C63, 58A05, 58A40

1 Introduction

It is known that the operators of integration and derivation have geo-
metrical and physical interpretations and they were used in the modelation
of problems from different domains. The use of reviewed Liouville-Riemann
integration and derivation operators lead to fractional integration and deriva-
tion. The geometrical and physical interpretation is suggested by the Stielt-
jes integral and it was done by I. Podlubny [7]. There is a vast bibliography
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which contains the properties of fractional integral and derivative and the
analysis of the processes which are modeled with their help [2], [5], [8].

A lot of models which use the fractional derivative are defined on an
open set in Rn. In this paper we present the fractional derivative taking into
account the geometrical character, namely the behavior of associated objects
under a change of local chart.

The outline of this paper is as follows. In Section 2 we describe the
reviewed fractional derivative on R using [2], [5], the fractional osculator
bundle T α(M) on a differentiable manifold and the behavior of introduced
objects under a change of local chart. In Section 3, we define the fractional
osculator bundle of k order using the method presented by R. Miron in [6].
We introduce: the Liouvile fractional vector fields, the αk-fractional spray
and the fractional nonlinear connection. We prove that these objects have a
geometrical character. Our findings are analogous with R. Miron’s results for
the fractional case. In Section 4 we describe the fractional Euler-Lagrange
equations for fractional osculator Lagrange spaces of superior order. The
results are applied for the k-order fractional bundle prolongation of Lagrange,
Finsler and Riemann structures.

The main results from the present paper were used in [3] and [4] for
the study of some fractional geometrical structures and they will permit the
study of other structures of this type.

2 The fractional derivative on R. The frac-

tional osculator bundle on the differentiable

manifold.

2.1 The fractional derivative on R

Let f : [a, b] → R be a derivable function and α ∈ R, α > 0. The
functions:

aD
α
t f(t) =

1

Γ(m− α)
(
d

dt
)m

∫ t

a

(t− s)m−α−1(f(s)− f(a))ds

tD
α
b f(t) =

1

Γ(m− α)
(−

d

dt
)m

∫ b

t

(t− s)m−α−1(f(s)− f(b))ds,
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are called the left respectively the right Liouville Riemann fractional deriva-
tives of function f, where m ∈ N∗ with m−1 ≤ α < m and Γ is Euler Gamma
function.

In general, the operators aD
α
t , tD

α
b do not satisfy semigroupal properties

with respect to the concatenation operation. Thus, we define the derivative
operators on the function spaces where the semigroupal properties hold.

The functions:

Dα
t f(t)=

1

Γ(m−α)
(
d

dt
)m

∫ t

−∞

(t− s)m−α−1(x(s)−x(0))ds, 0 ∈ (−∞, t)

∗Dα
t f(t)=

1

Γ(m−α)
(−

d

dt
)m

∫ ∞

t

(s−t)m−α−1(x(s)−x(0))ds, 0 ∈ (t,∞)

are called the left, respectively the right fractional derivative of α order for
function f.

If supp(f) = C(a, b), then Dα
t f(t) =a D

α
t f(t),

∗Dα
t f(t) =t D

α
b f(t).

We define the seminorms:

|x|Jα
L
(R) = ||Dα

t ||L2(R), |x|Jα
R
(R) = ||∗Dα

t ||L2(R)

and the norms:

||x||Jα
L
(R) = (||x||2L2(R) + |x|2Jα

L
(R)), ||x||Jα

R
(R) = (||x||2L2(R) + |x|2Jα

L
(R)),

where Jα
L(R), respectively Jα

R(R) denotes the closure of C∞
0 (R) with respect

to || · ||Jα
L
(R), respectively || · ||Jα

R
(R).

From the above definitions we have the following [2]:

Proposition 2.1. 1. Let I ⊂ R and Jα
L,0(I), J

α
R,0(I) be the closure of C∞

0 (I)

in accordance with the respective norms. Then, for any f ∈ J
β
L,0(I), 0 < α <

β, respectively for any f ∈ J
β
R,0(I), 0 < α < β, the relation

D
β
t f(t) = Dα

t D
β−α
t f(t),

respectively, the relation

∗D
β
t f(t) =

∗ Dα
t
∗D

β−α
t f(t)

holds;
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2. If lim
n→∞

αn = p ∈ N∗, then

lim
n→∞

(Dαn

t f(t)) = D
p
t f(t), lim

n→∞
(∗Dαn

t f(t)) =∗ Dpf(t);

3. (i) If f(t) = c, t ∈ [a, b], then Dα
t f(t) = 0;

(ii) If f1(t) = tγ, t ∈ [a, b], then Dα
t f1(t) =

tγ−αΓ(1 + γ)

Γ(1 + γ − α)
;

4. If f1, f2 are analytical functions on [a, b], then:

Dα
t (f1f2)(t) =

∞
∑

k=0

(

α

k

)

Dα−k
t f1(t)

(

d

dt

)k

f2(t),

where

(

d

dt

)k

=
d

dt
◦ ... ◦

d

dt
;

5.
∫ b

a

f1(t)D
α
t f2(t)dt = −

∫ b

a

f2(t)
∗Dα

t f1(t)dt;

6. If f : [a, b] → R is analytical and 0 ∈ (a, b) then

f(t) =
∞
∑

h=0

Eα(t
h)Dαh

t f(t)|t=0,

where Eα is the Mittag-Leffler function, Eα(t
h) =

∞
∑

h=0

tαh

Γ(1 + αh)
.

2.2 The fractional osculator bundle

Let α ∈ (0, 1) and M a n-dimensional differentiable manifold. The pa-
rameterized curves on M, c1, c2 : I → M , with 0 ∈ I, c1(0) = c2(0) ∈ M have
a fractional contact α in x0 if the relation

Dα
t (f ◦ c1)|t=0 = Dα

t (f ◦ c2)|t=o (1)

holds, for all f ∈ F(U) and x0 ∈ U , where U is a local chart on M.
Preceding equality (1) defines a relation of equivalence. The classes [c]αx0

are called the fractional osculator space in x0, which will be denoted by
Osc

(α)
x0 (M) = T α

x0
(M).
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Let T α(M) =
⋃

x0∈M

T α
x0
(M) and πα : T α(M) → M , given by πα[c]αx0

=

x0. There is a differential structure on T α(M) and (T α(M), πα,M) is a
differentiable bundle space.

If U is a local chart on M with x0 ∈ U and c : I → M is a curve given by
xi = xi(t), i = 1..n, t ∈ I, then [c]αx0

is characterized by:

xi(t) = xi(0) +
tα

Γ(1 + α)
Dα

t x
i|t=0, t ∈ (−ε, ε).

The coordinates of [c]αx0
on (πα)−1(U) ⊂ T α

x0
(M) are (xi, yi(α)), where

xi = xi(0), yi(α) =
1

Γ(1 + α)
Dα

t x
i(t)|t=0, i = 1..n.

From Proposition 2.1 and and the definition of T α(M) we have:

Proposition 2.2. 1. If 0 < α < β then T (α)(M) ⊂ T (β)(M);
2. If lim

n→∞
αn = 1 then lim

n→∞
T (αn)(M) = T (M).

Let (xi), i = 1..n be the coordinate functions on U and (dxi)i=1..n be the

base of 1-forms D1(U) and

(

∂

∂xi

)

i=1..n

the base of the vector fields X(U).

For f : U → R and α ∈ (0, 1), the fractional derivative with respect to xi is
defined by:

Dα
xif(x) =

=
1

Γ(1−α)

∂

∂xi

∫ xi

ai

f(x1,...,xi−1,s,xi+1,...,xn)−f(x1,...,xi−1, ai, xi+1,...,xn)

(xi−s)α
ds

(2)

where Uab = {x ∈ U, ai ≤ xi ≤ bi, i = 1..n} ⊂ U .
From (2) we have:

Proposition 2.3. 1. If f i
1 = (xi)γ then (Dα

xif
i
1)(x) =

(xi)j−αΓ(1 + α)

Γ(1 + γ − α)
;

2. If f j
2 =

(xj)α

Γ(1 + α)
then (Dα

xif
j)(x) = δ

j
i ;

3. Dα
xi(Dα

xjf)(x) = Dα
xj (Dα

xif)(x), i, j = 1..n.

5



We consider the functions (xi)α ∈ F(U) and d(xi)α = α(xi)α−1dxi ∈
D1(U), i = 1..n. The fractional exterior derivative is the operator dα :
F(U) → D1(U) given by [1]:

dαf = d(xi)αDα
xi(f).

Let Dα
xi : D1(U) → D1(U) be the operator given by:

Dα
xi(ajdx

j) =

∞
∑

k=0

(

α

k

)

Dα−k
xi (aj)

(

∂

∂xi

)k

(dxj). (3)

From (3) and

(

∂

∂xi

)k

(dxj) = d(

(

∂

∂xi

)k

(xj)) = 0, k ≥ 1

we obtain:

Dα
xi(ajdx

j) = Dα
xi(aj)dx

j . (4)

Let dα : D1(U) → D2(U) be the operator given by:

dα(ajdx
j) = d(xi)α ∧Dα

xi(ajdx
j). (5)

From (4) and (5) we can deduce:

dα(ajdx
j) = Dα

xi(aj)d(x
i)α ∧ dxj

dα(bjd(x
j)α) = Dα

xi(bj)d(x
i)α ∧ d(xj)α.

(6)

Proposition 2.4. Let U , U , U ∩U 6= ∅ be two charts on M, x ∈ U ∩U and
the change of local chart given by:

xi = xi(x1, ..., xn), rang

(

∂xi

∂xj

)

= n. (7)

With respect to (7) the following relations:

d(xi)α =
α

J
i
j(x, x)d(x

j)α

Dα
xi =

α

J
j
i (x, x)D

α
xj

α

J
i
j(x, x) ·

α

J
j
k(x, x) = δik

α

J
i
j(x, x) = (xi)α−1 ∂x

i

∂xj

1

(xj)1−α
,
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hold, where

α

J
i
j(x, x) =

1

Γ(1 + α)
Dα

xj (xi)α.

Let Xα(U) be the module of the fractional vector fields generated by the

operators {Dα
xi}i=1..n. A fractional field of vectors

α

X ∈ Xα(U) has the form
α

X =
α

X iDα
xi, where

α

X i ∈ F(U), i = 1..n. Under a change of local chart it

changes by
α

X i =
α

J i
j(x, x)X

j.
The fractional differential equation associated to the fractional field of

vectors
α

X is:

Dα
t x

i(t) =
α

X
i(x(t)), i = 1..n. (8)

The fractional differential equation (8) with initial conditions has solutions
[2].

3 The fractional osculator bundle of higher

order. Geometrical structures.

3.1 The fractional k-osculator bundle, k ≥ 1.

The parameterized curves on M, c1, c2 : I → M , with 0 ∈ I, c1(0) =
c2(0) = x0 ∈ M have a fractional contact of k order in x0 if for any f ∈ F(U),
the following relations:

Dαa
t (f ◦ c1)|t=0 = Dαa

t (f ◦ c2)|t=0, a = 1..k

hold, where x0 ∈ U and U is a local chart on M.
The classes ([c]αax0

)a=1..k are called the fractional osculator space of k order

and they will be denoted by Oscαkx0
(M) =

αk

Ex0.

We consider
αk

E =
⋃

x0∈M

αk

Ex0 and παk
0 :

αk

E → M given by παk
0 ([c]αax0

)a=1..k =

x0. There is a differentiable structure on
αk

E and (
αk

E, παk
0 ,M) is a differentiable

bundle.
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If U is a local chart on M with x0 ∈ U and c : I → M is a curve given by
xi = xi(t), i = 1..n, t ∈ I, then a class ([c]αax0

)a=1..k is given by the curve:

xi(t) = xi(0) +

k
∑

a=1

tαa

Γ(1 + αk)
Dαa

t xi(t)|t=0, t ∈ (−ε, ε).

In (παk
0 )−1(U) ⊂

αk

E , the coordinates of ([c]αax0
)a=1..k are (x

i,yi(αa)), i = 1..n,
a = 1..k, where

xi = xi(0), yi(αa) =
1

Γ(1 + αk)
Dαa

t xi(t), i = 1..n, a = 1..k.

Proposition 3.1. Let U , U , U
⋂

U 6= ∅ be two charts on M and

xi = xi(x1, ..., xn), i = 1..n, det

(

∂xi

∂xj

)

6= 0 (9)

the coordinates transformation. The coordinates transformation on (παk
0 )−1

(U
⋂

U) are given by:

yi(α) =
α

J
i
j(x, x)y

j(α)

Γ(α(a− 1))

Γ(α)
yi(αa) = Γ(1 + α)

α

J
i
j(y

α(a−1), x)yj(α) +
Γ(2α)

Γ(α)

α

J
i
j(y

α(a−1), yα)yj(2α)+

+ ...+
Γ(2α)

Γ(α)

α

J
i
j(y

α(a−1), yαb)yj(αb) + ...+
Γ(α(a− 1))

Γ(α)
yi(αa),

a = 2..k, b = 2..k, b ≤ a,

(10)

where

α

J
i
j(x, x) = Dα

xj (x
i)

α

J
i
j(y

α(a−1), yα(b−1)) = Dα
yj(α(b−1))y

i(α(a−1)), a, b = 2...k, b ≤ a,

α

J
i
j(y

α(a−1), x) = Dα
xjy

i(α(a−1)), i, j = 1...n.

From the definition of fractional osculator bundle we can deduce that if
lim
n→∞

αn = 1 then lim
n→∞

αn

E = E = Osck(M). The bundle space (E, π,M) was

defined and studied in [6].
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3.2 Geometrical structures on
αk

E.

Let παk
αh :

αk

E →
αh

E , h < k, be the projections given by:

παk
αh(x, y

(α), ..., y(αk)) = (x, y(α), ..., y(αh))

and the operator dαπαk
αh : Xα(

αk

E) → X
α(

αh

E):

dαπαk
αh = Γ(1 + α)(d(xi)αDα

xi +

h
∑

a=1

d(yi(αa))αDα
yi(αa)), h < k,

where Xα(
αk

E) is the module of fractional vector fields on
αk

E .
We consider Vαk

αh = Kerdαπαk
αh, h = 0, 1, ..., k − 1 and its base given by

{Dα
yi(α(k+1)), ..., D

α
yi(αk)}, i = 1..n. From the definition of Vαk

αh we get:

V
αk
α(k−1) ⊂ V

αk
α(k−2) ⊂ ... ⊂ V

αk
α ⊂ V

αk
0

dαπαk
αh(D

α
xi) = Dα

xi, d
απαk

αh(D
α
yi(b)

) = Dα
yi(b)

, b = 1..h.

From Proposition 3.1 we obtain:

Proposition 3.2. Under the change of local chart (9), the operators Dα
xi,

Dα
yi(αa), i = 1..n, a = 1..n, change by:

Dα
xi =

k
∑

a=1

α

J
j
i (y

(αa), x)Dα
yj(αa) +

α

J
j
i (x, x)D

α
xj

Dα
yi(αa) =

k
∑

b=1

α

J
j
i (y

αb, yαa)Dα
yj(αb) , a = 1..k.

(11)

From Proposition 3.2 we can deduce that Vαk
αh has geometrical character.

The following fractional fields of vectors:

α

Γ = yi(α)Dα
yi(αk)

2α

Γ = Γ(1 + α)yi(α)Dα
yi(α(k−1)) +

Γ(2α)

Γ(α)
yi(2α)Dα

yi(αk)

. . .

αk

Γ =Γ(1+α)yi(α)Dα
yi(α)+

Γ(2α)

Γ(α)
yi(2α)Dα

yi(2α)+. . .+
Γ(α(k−1))

Γ(α)
yi(αk)Dα

yi(αk)

(12)
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are called Liouville fractional fields of vectors.
From (10) and (11) the fields

αa

Γ, a = 1..k have geometrical character and
α

Γ ∈ Vαk
0 ,

2α

Γ ∈ Vαk
α , ...,

αk

Γ ∈ Vαk
α(k−1).

The operators
αk

J : Xα(
αk

E) → Xα(
αk

E) with the properties:

αk

J (D
α
xi) = Dα

yi(α) ,
αk

J (D
α
yi(αa)) = Dα

yi(α(a+1)) , a = 1..k−1,
αk

J (D
α
yi(αk)) = 0 (13)

is called αk fractional tangent structure.
From (11), (12) and (13) we have:

Proposition 3.3. αk-fractional tangent structure has the following proper-
ties:

1.
αk

J has a geometrical character;

2. rang(
αk

J ) = kn,
αk

J ◦ ... ◦
αk

J = 0;

3.
αk

J (
αk

Γ) =
α(k−1)

Γ , ...,
αk

J (
2α

Γ) =
α

Γ,
αk

J (
α

Γ) = 0.

The fractional field of vectors
αk

S ∈ Xα(
αk

E) is called αk-fractional spray if
αk

J (
αk

S ) =
αk

Γ. From (12) and (13) we obtain the form of
αk

S :

αk

S = Γ(1 + α)yi(α)Dα
xi +

Γ(2α)

Γ(α)
yi(2α)Dα

yi(α) + ...+

+
Γ(α(k − 1))

Γ(α)
yi(αk)Dα

yi(α(k−1)) −
Γ(αk)

Γ(α)
Gi(x, y(α), ..., y(αk))Dα

yi(αk) .

(14)

Proposition 3.4. The αk-fractional spray uniquely defines the fractional
differential equation given by:

1

Γ(1 + αk)
D

α(k+1)
t xi(t) +Gi(x,Dα

t x, ...,Γ(1 + α(k − 1))Dαk
t x) = 0.

Let
αk

N be the submodule of Xα(
αk

E) so that:

X
α(

αk

E)|(παk
0 )−1(U) = N

αk ⊕ V
αk
0 |(παk

0 )−1(U).

The submodule
αk

N is called fractional nonlinear connection.
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We consider lαk : X(α)(U) → Xα(
αk

E)|(παk
0 )−1(U), l

αk(Dα
xi) = ∆αk

xi , i = 1..n,
where

∆αk
xi = Dα

xi −
k

∑

a=1

αa

N
j
iDyi(αa), i = 1..n. (15)

From (11) and (15) we obtain:

∆αk
xi =

α

J
j
i (x, x)∆

αk
xi .

The functions (
αa

N
j
i )i,j=1..n;a=1..k are called the coefficients of fractional non-

linear connection.

Let
αk

N be the vertical submodule given by:

αk

N0 =
αk

N,
αk

Na =
αk

J (N
αk
a−1), a = 1..k − 1, (16)

where
αk

N is the submodule defined by fractional nonlinear connection.
From (16) we have:

X
α(

αk

E)|(παk
0 )−1(U) =

αk

N0 ⊕ ...⊕
αk

Nk−1 ⊕ V
αk
0 |(παk

0 )−1(U), U ⊂ M. (17)

In what follows we will use a base adapted to the decomposition (17).
Then:

∆αk
yi(k)

=
αk

J (∆
αk
xi ), ∆αk

yi(αa) =
αk

J (∆
αk
yi(a−1)), a = 2..k, Dα

y(α) , i = 1..n,

with

∆αk
xi ∈

αk

N0, ∆
αk
yi(αa) ∈

αk

Na, a = 2..k − 1, Dα
yi(α) ∈ V

αk
0 , i = 1..n

and

αk

∆yi(α) = Dα
yi(α) −

α

N
j
iD

α
yi(2α) − ...−

α(k−1)

N
j
iD

α
yj(αk)

αk

∆yi(2α) = Dα
yi(2α) − ...−

α(k−1)

N
j
iD

α
yj(αk)

. . .

αk

∆yi(α(k−1)) = Dα
yi(α(k−1)) −

α

N
j
iD

α
yj(αk) .

(18)

11



The dual base of (18) is:

αk

δ y
i(α) = d(yi(α))α +

α

M
i
jd(x

j)α

αk

δ y
i(2α) = d(yi(2α))α +

α

M
i
jd(y

i(α))α +
2α

M
i
jd(x

j)α

. . .

αk

δ y
i(αk) = d(yi(αk))α +

α

M
i
jd(y

i(α(k−1)))α + · · ·+
αk

M
i
jd(x

j)α,

(19)

where

α

M
i
j =

α

N
i
j ,

2α

M
i
j =

2α

N
i
j +

α

N
i
k

α

N
h
j

. . .

αk

M
i
j =

αk

N
i
j +

α(k−1)

Nh

α

N
h
j + · · ·+

α

N
i
h

α(k−1)

N
h
j .

The functions
αa

M i
j, a = 1..k are called dual coefficients of fractional nonlinear

connection.
From (14) and (19) we obtain:

Proposition 3.5. A αk-fractional spray ,
αk

S , with the components Gi(x,
y(α), ..., y(αk)), determines a fractional nonlinear connection with the dual
coefficients given by:

α

M
i
j = Dα

yi(α)G
i

2α

M
i
j =

Γ(α)

Γ(2α)
(
αk

S (
α

M
i
j) +

α

M
i
l

α

M
l
j)

. . .

αk

M
i
j =

Γ(α(k − 1))

Γ(αk)
(
αk

S (
α(k−1)

M
i
j) +

α

M
i
l

α(k−1)

M
l
j).

We consider the adapted base given by (18) and the operator
αk

L defined
by:

αk

L∆αb

xi
(
αk

∆yj(αa)) =
(αk)

L
h
ji

αk

∆yh(αa)

αk

L∆αk

yi(αb)
(
αk

∆yj(αa)) =
(αb)

C
h
ji

αk

∆yh(αa), α = 0, 1, ..., k, b = 1..k,

(20)

12



where yi(0) = xi. The coefficients (
(αk)

L h
ji,

(αb)

C h
ji) are called the fractional coef-

ficients of linear connection N.
A distinguished fractional tensor field of type (0, k) is given by the fol-

lowing expression:

αk
g =

αk
g i0i1...ikd(y

i0(0))α ⊗
αk

δ y
i1(α) ⊗ · · · ⊗

αk

δ y
ik(αk),

where
αk

δ yi(αa), a = 0..k are given by (19) and yi(0) = xi.

The covariant derivative with respect to fractional nonlinear connection

N of
αk
g is defined by:

gαki0i1...ik|m =
αk

∆ym(0)(gαki0i1...ik)−
(αk)

L
j
i0m

αk
g ji1...ik ,

gαk

i0i1...ik

(αb)

| m

=
αk

∆ym(αb)(gαki0i1...ik)−
αk

C
h
i1m

gαki0h...ik − · · · −
αk

C
h
ikm

gαki0...h.

A fractional metric structure on
αk

E is a fractional field of tensors of type

(0, 2),
αk
g =

αk
g ijd(x

i)α⊗d(xj)α, with
αk
g ij(x, y

(α), ..., y(αk)), which is symmetric
and positively defined.

The fractional Sasaki lift of
αk
g is the fractional field of tensors given by:

αk

G =
αk
g ijd(x

i)α ⊗ d(xj)α +
k

∑

a=1

αk
g ijδy

i(α) ⊗ δyj(α).

If:

αk
g ij|m = 0,

αk
g

ij
αk

| m
= 0

hold, then the fractional linear connection (20) is called metrical.

Proposition 3.6. On
αk

E there is a unique metrical fractional linear connec-

tion N with respect to metrical structure
αk

G with the property:

(αk)

L
i
jl =

(αk)

L
i
lj,

(αa)

C
i
jl =

(αa)

C
i
lj , a = 1..k.

13



The coefficients
(αk)

L i
jl,

(αk)

C i
jl have the expressions:

(αk)

L
i
jl =

1

2

αk
g is(

αk

∆xj

αk
g sl +

αk

∆xl

αk
g js −

αk

∆xs

αk
g jl)

(αa)

C
i
jl =

1

2

αk
g is(

αk

∆yj(αa)

αk
g sl +

αk

∆yl(αa)

αk
g js −

αk

∆ys(αa)

αk
g jl), a = 1..k.

4 Lagrange space
αk

L. Applications.

4.1 The fractional Euler-Lagrange equation.

A fractional Lagrangian of k order, k ∈ N∗, on the differentiable man-

ifold M, is a differentiable map L :
αk

E → R on
α̃k

E = {(x, y(α), ..., y(αa)) ∈
αk

E, rang||yi(α)|| = 1}. Also, L is continuous in the points of
αk

E for which yi(α)

is zero. Then,

gij(x, y
(α), ..., y(αk)) =

1

2
Dα

yi(α)D
α
yj(α)L

is d-fractional field of tensors on
αk

E . The Lagrangian L is regular if rang(gij) =

n on
α̃k

E .
Let c : t ∈ [0, 1] → (xi(t)) ∈ M be a parameterized curve so that Imc ⊂

U , where U is a chart on M. The extension of curve c to
αk

E ,
αk
c , is the following

differentiable map:

αk
c : t ∈ [0, 1] → (xi(t), yi(α)(t), ..., yi(αk)(t)) ∈

α̃k

E. (21)

The action of L along the curve
αk
c is given by:

I(
αk
c ) =

∫ 1

0

L(x(t), y(α)(t), ..., y(αk)(t))dt.

Let cε : t ∈ [0, 1] → (xi(t, ε)) ∈ M be the family of curves so that
Imcε ⊂ U and cε(0) = c(0), yi(αa)(0) = yi(αa)(1) = 0, a = 1..k− 1, where ε is

a sufficiently small number in absolute value. The action on
αk
cε is:

I(
αk
cε) =

∫ 1

0

L(xε(t), y
(α)
ε (t), ..., y(αk)ε (t))dt.

14



A necessary condition for I(
αk
c ) to be an extreme fractional value for I(

αk
cε) is:

Dα
ε I(

αk
cε)|ε = 0.

By direct calculus we obtain:

Proposition 4.1. The curve c : t ∈ [0, 1] → (xi(t)) ∈ M has the property

that the action I(
αk
c ) is an extreme value of I(

αk
cε) if (xi(t)), i = 1..n is a

solution of fractional Euler-Lagrange equation:

Dα
xiL+

k
∑

a=1

(−1)adαat (Dα
yi(αa)L) = 0, i = 1..n (22)

where dαat =
a
∑

b=1

yi(αb)Dα
yi(α(b−1)) , y

i(0) = xi, a = 1..h.

A necessary condition for I(
αk
c ) to be an extreme value for I(

αk
cε) is:

dI(
αk
cε)

dε
|ε=0 = 0.

Proposition 4.2. The curve c : t ∈ [0, 1] → (xi(t)) ∈ M has the property

that the action I(
αk
c ) is an extreme value of I(

αk
cε) if (xi(t)), i = 1..n is a

solution of fractional Euler-Lagrange equation:

∂L

∂xi
+

k
∑

a=1

(−1)adαt (
∂L

∂yi(αa)
) = 0, i = 1..n, (23)

where dαt =
h
∑

a=1

yi(αa)Dα
yi(α(a−1)), y

i(0) = xi.

Example. We consider the fractional differential equation:

cΓ(1 + γ)

Γ(1 + γ − α)
xγ−α+a1Γ(1+2α)y2α+a2Γ(1+3α)y3α+a3Γ(1+4α)y4α = 0. (24)

Equation (24) is the fractional Euler-Lagrange equation (22) for the fractional
Lagrange function:

L =
c

1 + γ − α
xγ−a1Γ(1+2α)(yα)α+a2Γ(1+3α)(y2α)α−a3Γ(1+4α)(y3α)α.

15



Equation (24) is the fractional Euler Lagrange equation (23) for the fractional
Lagrange function:

L =
cΓ(1 + γ)

Γ(1 + γ − α)(γ − α + 1)
xγ−α−1 −

a1

2
Γ(1 + 2α)(yα)2 +

a2

2
Γ(1 + 3α)(y2α)2−

−
a3

2
Γ(1 + 4α)(y3α)2.

Along the curve c we define the operators:

0

Ei = Dα
xi +

h
∑

a=1

(−1)a
1

Γ(1 + αa)
dαat (Dα

yi(αa)), i = 1..n

α

Ei =
h

∑

a=1

(−1)a
1

Γ(1 + αa)
dαat (Dα

yi(αa)), i = 1..n

. . .

αh

E i = (−1)k
1

Γ(1 + αk)
dαkt (Dα

yi(αk)), i = 1..n

which have the property:

Proposition 4.3. The operators
0

Ei(L), ...,
αk

E i(L), i = 1..n, are d-fractional

fields of covectors for any differentiable Lagrangian of order αk,
αk

L, along the

extension
αk
c of curve c.

d-fields of covectors
α

Ei(L), ...,
αk

E i(L) are called Craig and Synge d-fractional
fields of covectors.

Proposition 4.4. 1. d-fractional field of covectors,
α(k−1)

Ei (L), has the form:

α(k−1)

Ei (L) = (−1)k−1 1

Γ(1 + α(k − 1))
(Dα

yi(α(k−1))L−
α

Γ(D
α
yi(α(k))L)−gijy

j(α(k+1))),

i = 1..n, where
α

Γ is given (12).
2. The system of fractional differential equations:

gij
α(k−1)

E j(L) = 0, i = 1..n

determines a αk fractional spray
αk

S on the curve
αk
c , given by (21):

αki

G =
Γ(α)

Γ(1 + αk)Γ(1 + α)
gij[

α

Γ(D
α
yj(αk)L)−Dα

yj(α(k−1)) ], i, j = 1..n.
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4.2 The prolongation of Riemann, Finsler and Lagrange

fractional structures to fractional bundle of k or-

der.

The pair
α

R = (M,
α
g) is called Riemann fractional structure, where M is

a differentiable manifold of n dimension and
α
g = (

α
gij) is a fractional field of

tensors, which means that under a change of local chart on M, the system of

functions
α
gij change by:

α
gij(x) =

α

J
l

i(x, x)
α

J
h

j (x, x)
α
glh(x)

and
α
gij =

α
gji with (

α
gij) is positively defined. The fractional Christofel sym-

bols
α

γl
ij of

α
g are:

α
γl
ij =

1

2

α
gls(Dα

xi

α
gsj +Dα

xj

α
gis −Dα

xs

α
gij).

The prolongation of
α
g to

αk

E is the fractional field of tensors
αk
g with the

property:

(
αk
g ◦ παk

0 )(x, y(α), ..., y(αk)) =
α
g(x), ∀(x, y(α), ..., y(αk)) ∈ (παk

0 )−1(U).

Proposition 4.5. There are fractional nonlinear connections
αk

N on
αk

E which

are determined only by
α
g. One of them is:

α

M
i
j =

α
γi
jmy

(α)m,

2α

M
i
j =

Γ(α)

Γ(2α)
(
α

Γ(
α

M
i
j) +

α

M
i
h

α

M
h
j ),

. . .

αk

M
i
j =

Γ(α(k − 1))

Γ(αk)
(
α

Γ(
α(k−1)

M
i
j) +

α

M
i
h

α(k−1)

M
h
j ).

(25)

For k = 1 the coefficients of fractional nonlinear connection
α

N on
α

E are
α

M i
j = γi

jhy
h(α) and for k = 2 the coefficients are:

α

M
i
j = γi

jhy
h(α),

2α

M
i
j = γi

jhy
h(2α) +

Γ(α)

Γ(2α)
(Dα

xhγ
i
jp + γi

hlγ
l
jp)y

h(α)yp(2α).
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The pair
α

F = (M,
α

F ) is called Finsler fractional structure, where M is a

differentiable manifold of dimension n, and
α

F :
α

E → M is called fundamental

fractional function. We consider the prolongation of
α

F ,
αk

F :
αk

E → R given
by:

(
αk

F ◦ παk
α )(x, y(α), ..., y(αk)) =

α

F (x, y(α))

and the prolongation of fundamental fractional tensor:

α
γij(x, y

(α)) =
1

2
Dα

yi(α)(D
α
yj(α)

α

F 2)

given by:

(
αk
γ ij ◦ π

αk
0 )(x, y(α), ..., y(αk)) =

α
γij(x, y

α).

Let
α
γh
ij(x, y

(α)) be the Christoffel symbols of (
α
γij), given by:

α
γh
ij(x, y

(α)) =
1

2

α
γls(Dα

xi

α
γij +Dα

xj

α
γis −Dα

xs

α
γij),

where (
α
γls) = (

α
γls)

−1.
The coefficients of nonlinear fractional connection (fractional Cartan co-

efficients) are:

α

G
i
j =

1

2
Dα

yj(α)(
α
γi
pmy

p(α)ym(α)).

Proposition 4.6. There is a nonlinear fractional connection on
α̃k

E =
αk

E�{0} =

{(x, y(a), ..., y(αa)) ∈
αk

E, rang||yi(α)|| = 1} which only depends on the funda-

mental fractional function
α

F of the fractional Finsler space. One of them has
the dual coefficients given by:

α

M
i
j =

α

G
i
j,

2α

M
i
j =

Γ(α)

Γ(2α)
(
α

Γ(
α

M
i
j) +

α

G
i
m

α

M
m
j ),

. . .

αk

M
i
j =

Γ(α(k − 1))

Γ(αk)
(
α

Γ(
α(k−1)

M
i
j) +

α

G
i
m

α(k−1)

M
m
j ).
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The pair
α

L = (M,
α

L) is called Lagrange fractional structure, where
α

L :
α

E → R.

The prolongation of
α

L to
αk

E is defined by:

(
αk

L ◦ παk
α )(x, y(α), ..., y(αk)) =

α

L(x, y
(α))

and the prolongation of fundamental tensor:

α
gij(x, y

(α)) =
1

2
Dα

yi(α)D
α
yj(α)

α

L(x, y
(α))

to
αk

E is:

(
αk
g ij ◦ π

αk
α )(x, y(α), ..., y(αk)) =

α
gij(x, y

(α)).

Considering the integral action I(
α
c) =

∫ 1

0
L(x(t), y(α)(t))dt on a parame-

terized curve c, the fractional Euler-Lagrange equations (22) are:

yi(2α) =
α

G
i(x, y(α)), i = 1..n

where

α

G
i(x, y(α)) = gim(Dα

ym(α)D
α
xjy

j(α) −Dα
xmL), i = 1..n

(gim) = (gim)
−1, gim = Dα

yi(α)D
α
ym(α)L.

The functions:

α

G
i
j(x, y

(α)) = Dα
yj(α)G

i(x, y(α)), i, j = 1..n (26)

are the first dual coefficients of fractional nonlinear connection
α

N on
α̃

E which

only depends on the fundamental function
α

L of the Lagrange space
α

L.
We obtain the result:

Proposition 4.7. There are nonlinear fractional connections on
α̃k

E which

only depend on the fundamental function
α

L of the Lagrange space
α

L. One of

them has the dual coefficients (25), where
α

Gi
j are given by (26).
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5 Conclusions.

The study conducted in this paper takes into account the geometrical
character of the introduced objects. In the case M = R, using the methods
from this paper, the information concerning fractional differential systems
which describe concrete processes was obtained in [3]. The results from the
present paper will permit the study of other geometrical objects which are
described with the help of the fractional derivative.
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