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ON THE DISCRETE-CONTINUOUS DYNAMICAL SYSTEMS
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1. Introduction. In the last twenty years the study of the dynamical
systems using difference equations enjoyed of a special interest.Starting from
a suggestion of T.D.Lee[5] one can say that the aspects of finitude of the
phisical reality impose rather the discrete phenomena than the continuous
ones.Among these the time-discrete evolution is distinguished.Some physical
models (harmonic oscillator, Newtonian potential system) but especially the
economical models (Samuelson’s Bussiness Cycle, Hicks’s trade cycle, etc)
and the biological and statistical models (waiting process, birth and death
processes, neuronal networks, etc) require a specific approach, a discrete
description according to the essence of the phenomenon.

In order to obtain such a description for the discrete phenomena there
are two ways: the first one uses methods and schemas of discretization
of the continuous description for an evolution system, evidently with the
preservation of their special structures; the second one is to go from the
discrete model to the difference equations.The latter directly application
imposes a specific variational calculus and proper arguments.

The utilization of equations of the discrete mechanics in the study of
some classes of Hamiltonian systems was done by Greenspan(1973-1974) [2]
and Labudde(1980) [4].Then Lee(1987) utilized the Lagrangian formalism in
order to develop a discrete mechanics in which the trajectories of the system
are supposed continuous and piecewise linear (the energy is constant on each
segment of trajectory in each step of time).

Y.Wu(1990) [6] showed that the symplectic integration schemas for the
Hamiltonian systems admit a natural discrete variational principle.Shibberu
(1993) [5] describes a discrete-time theory for the Hamiltonnian dynamical
systems based on a version of the variational principle (”stationary action”
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principle). He deduced the Hamilton equations in discrete-time.In [5] the
time is considered in the action integral as a dependent variable.On the other
hand it is assured the conservation of the energy in the medium values of
the trajectory by considering so-called midpoint scheme utilized in the dis-
cretization and the integration of some differential equations.For the Newton
potential systems of Lee, D’Innocenzo and others [3] Shibberu finds again
identical continuous piecewise linear trajectories for the coordinate-position
q, but the Shibberu’s procedure determines also continuous trajectories for
the coordinate-momentum p.

The main idea of our study is a direct treatise of the dynamical
systems of discrete-continuous type our aim is to: formulate a discrete-
continuous variational principle and deduce the discrete-continuous Euler-
Lagrange equations (solution for the direct problem); establish the self-
adjointing conditions of Helmholtz type for difference equation systems (so-
lution for the inverse problem); study the question of the conservation laws
for discrete Lagrangians and formulate a discrete version of the Noether’s
theorem; obtain the discrete Euler-Lagrange-Hamilton equations based on
a result established in the section 2.

The text contains several examples including the discrete case for the
mentioned references.

2. Discrete-Continuous Euler Equations. Let {τk}k∈[0,N ],
[0, N ] = {0, 1, 2, ..., N}, be a division of the interval [τ0, τN ] ⊂ R, where

(2.1) τk = τ0 + k∆τ , ∆τ =
τN − τ0

N

and let R = [τ0, τN ] × [a, b]⊂R2 be the two-dimensional network whose an
arbitrary element (τk, s) ∈ R is denoted by (k,s), k∈ [0, N ], s∈ [a, b]. For
a function y : R −→ Rn, C1–differentiable with respect to s ∈ [a, b], we
denote:

y(k, s) = (yi(k, s)), y(k, s) =
1
2
(y(k + 1, s) + y(k, s))

(2.2) y1(k, s) =
1

∆τ
· (y(k + 1, s)− y(k, s))

.
y(k, s) =

dy(k, s)
ds

,
.
y(k, s) =

dy(k, s)
ds

.

The set

(2.3) L2(R) = {y : R −→ Rn|
∫ b

a

(
N∑

k=0

δij · yj(k, s)∆τ)ds < ∞}
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endowed with the scalar product

(y, z) =

b∫
a

(
N∑

k=0

δij · yi(k, s) · zj(k, s) ·∆τ)ds

is a Hilbert space.The tangent space of the manifold

(2.4) Ω = {y ∈ L2(R) , y(k, a) = y1(k) , y(k, b) = y2(k), k ∈ [1, N − 1],

y(0, s) = y3(s) , y(N, s) = y4(s) , s ∈ [a, b]}

in a point y ∈ Ω is

(2.5) TyΩ = {η : R−→Rn , η(k, a) = 0 , η(k, b) = 0 , k ∈ [1, N − 1],

η(0, s) = 0 , η(N, s) = 0 , s ∈ [a, b]}

For a function F : Ω−→R , the variation of F is the function δF : Ty−→R ,
given by:

(2.6) δF (η) =
dF (y(ε))

dε
|ε=0; η(k) =

dy(ε)(k)
dε

|ε=0,

where y(ε) ∈ Ω with ε ∈ I⊂R, 0 ∈ I, y(0) = y.The point y ∈ Ω is critical(or
stationary) for F if at this point δF = 0.

For η ∈ TyΩ, we denote

η(k, s) =
1
2
(η(k + 1, s) + η(k, s)),

(2.7) η1(k, s) =
1

∆τ
(η(k + 1, s)− η(k, s)),

◦
η =

dη(k, s)
ds

,
◦
η(k, s) =

dη(k, s)
ds

, (k, s) ∈ R

Let Ω = {y(k, s), y ∈ Ω , (k, s) ∈ R} , Ω1 = {y1(k, s) , y ∈ Ω , (k, s) ∈

R} ,
◦
Ω = {

◦
y(k, s) , y ∈ Ω , (k, s) ∈ R} and L : R×Ω×Ω×Ω1 ×

◦
Ω−→R,
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be a function of class C2 with respect to the variables from Ω,Ω,Ω1,
◦
Ω and

s ∈ [a, b]. By denoting

(2.9) L(k, s) = L(k, s, y(k, s) , y(k, s), y1(k, s),
◦
y(k, s)) , (k, s) ∈ R ,

the functional

(2.10) A(y) =

b∫
a

(
N−1∑
k=0

L(k, s) ·∆τ)ds

is called the action of L with respect to y ∈ Ω.
Theorem 2.1.(discrete-continuous variation principle). The function

y ∈ Ω is a critical point for A(y) iff

(2.11)
d(L(k, s) + L(k − 1, s))

dyi(k, s)
− d

ds
(
∂(L(k, s) + L(k − 1, s))

∂
◦
y

i
(k, s)

) = 0,

(k, s) ∈ R , i = 1, . . . , n.

Proof: Let y(ε) ∈ Ω , with ε ∈ I⊂R, 0 ∈ I, y(0) = y , and η(k, s) =
dy(ε)(k,s)

dε |ε=0. The variations of the function A(y) is

(2.12) δA(y)(η) =

b∫
a

(
N−1∑
k=1

(
d(L(k, s) + L(k − 1, s))

dyi(k, s)
−

− d

ds
(
∂(L(k, s) + L(k − 1, s))

∂
◦
y

i
(k, s)

) · ηi(k)∆τ)ds

By (2.12), we obtain (2.11).
For L(k, s) = L(s, y(s),

.
y(s)) , s ∈ [a, b] we obtain from (2.11), the

(continuous) Euler-Lagrange equations. For L(k, s) = L(k, y(k), y(k), y1(k),
k ∈ [0, N − 1], we obtain from (2.11) the discrete Euler equations:

(2.13) Ei(k) =
d(L(k) + L(k − 1))

dyi(k)
= 0 , i = 1, . . . , n.
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For ∆τ = 1 , τ0 = 1 , τN = N , from (2.13), we deduce the discrete Euler
equations given in [1]:

(2.14)
∂L(k)
∂yi(k)

− ∂L(k)
∂y1i(k)

+
∂L(k − 1)
∂y1i(k − 1)

= 0

Examples : 1.For L(k) = 1
2 · (−1)k · y1(k)2 + 1

2y(−1)k · y(k)2 , k ∈
[0, N − 1] , y(k) ∈ R, from (2.14) one obtains:

y1(k) = y(k − 1),

which together with the initial condition, y(0) = 1, y(1) = 1 , represents
the low of the Fibonacci recurrence:
2. For L(k) = 1

2 · ρ
k+2 · y1(k)2 , ρ = λ

µ , λ > 0 , µ > 0 , y(k) ∈ R, (2.14)
implies

λ · y(k + 1)− (λ + µ) · y(k) + µ · y(k − 1) = 0

which represents the equation of a waiting process in the case of statistic
equilibrium.
3. For the discretization of the Lagrangian of a Newtonian potential system,
given in [7], L(k) = 1

2 ·m
q1(k2)
t1(k) − V (q(k)) · t1(k), (q, t) : R−→R2, by using

(2.13) it results

(2.15)
m · 1

∆τ · (v(k)− v(k − 1)) = − 1
2

(
∂V (q(k))

∂q(k) · t1(k) + ∂V (q(k−1))
∂q(k−1)

)
1
2 ·m · v(k)2 + V (q(k)) = 1

2 ·m · v(k − 1)2 + V (q(k − 1)),

where v(k) = q1(k)
t1(k) .The difference equations (2.15) represent the discret

equations of the mechanics,given in [2],[3],[4],[5].

3. Helmholtz conditions for systems of difference equations.
Let Fi : R× Ω× Ω× Ω1−→R, i = 1, . . . , n, be C2 function with respect to
the variables from Ω,Ω,Ω1, given by:

(3.16) Fi(k) = Fi(k, y(k − 1), y(k), y(k − 1), y(k), y1(k − 1), y1(k)) ,

i = 1, . . . , n.

From (2.2) and (3.16) it results

dFi(k)
dyj(k − 1)

=
∂Fi(k)

∂yj(k − 1)
+

1
2
· ∂Fi(k)
∂yj(k − 1)

− 1
∆τ

· ∂Fi(k)
∂y1j(k − 1)

=
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= aij(k, k − 1)

(3.17)
dFi(k)
dyj(k)

=
∂Fi(k)
∂yj(k)

+
1
2
· ∂Fi(k)
∂yj(k)

+
1
2
· ∂Fi(k)
∂yj(k)

+
1

∆τ
· ∂Fi(k)
∂y1j(k − 1)

−

− 1
∆τ

· ∂Fi(k)
∂y1j(k)

= bij(k, k)

dFi(k)
dyj(k + 1)

=
1
2
· ∂Fi(k)
∂yj(k)

+
1

∆τ
· ∂Fi(k)
∂y1j(k)

= Cij(k, k + 1)

We call variation forms associated to (3.16) the function system

(3.18) δFi(k)(η) =
dFi(k, ε)

dε
|ε=0 , i = 1, . . . , n.

where Fi(k, ε) = Fi(k, y(ε)(k−1), y(ε)(k), y(ε)(k−1), y(ε)(k), y1(k−1), y1(k)),
and y(ε) ∈ Ω,is a one-parametric family of elements of Ω with ε ∈ I⊂R, 0 ∈
I,such that y(0) = y and η(k) = dy(ε)(k)

dε |(ε=0)

From (3.18) we have:

(3.19) δFi(k)(η) = aij(k, k − 1) · ηj(k − 1) + bij(k, k) · ηj(k)

+cij(k, k + 1) · ηj(k + 1) , i, j = 1, . . . , n.

For another one-parametric family
∼
y(ε), ε ∈ I, the variation forms are given

by

(3.20) δ
∼
F i(k)(

∼
η) =

∼
aij(k, k − 1) · ∼η

j
(k − 1) +

∼
b ij(k, k) · ∼η

j
(k)

+
∼
c ij(k, k + 1) · ∼η

j
(k + 1).

The variation forms {δ
∼
F i(k)(

∼
η)}, i = 1, . . . , n, are called adjoint of

{δFi(k)(η)}, i = 1, . . . , n if there is the function Q(η,
∼
η) : R−→R such that

(3.21)
∼
η

i
(k) ·δF (k)

i (η)−ηi(k) ·
∼
F i(k)(

∼
η)=Q(η,

∼
η)(k+1)−Q(η,

∼
η)(k) , k ∈ R

for any η,
∼
η ∈ TyΩ.
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Theorem 3.2. The variation forms {δ
∼
F i(k)(

∼
η)}i=1,...,n, are adjoint to

the variation forms {δFi(k)(η)}i=1,...,n, iff

∼
aij(k, k + 1) = cji(k, k + 1) ,

(3.22)
∼
bji(k, k) = bji(k, k) ,

∼
cji(k + 1, k) = aji(k + 1, k, k)

Proof: By considering Q(η,
∼
η)(k) = Aij(k)·∼η

i
(k) · ηj(k − 1) + Bij(k) ·

ηi(k)
∼
η

j
(k − 1) the condition (3.21) implies for any η,

∼
η.

∼
aij(k, k− 1) = Bij(k),

∼
b ij(k, k) = bji(k, k),

∼
c ij(k, k +1) = −Aji(k− 1),

Bij(k + 1) = cji(k, k + 1), Aij(k) = −aij(k, k − 1) and (3.22) verified.
The variations forms {δFi(k)(η)}i=1,...,n, are called self-adjoint if they

coincide with it adjoint variation form, that is

(3.23) δFi(k)(η) = δ
∼
F i(k)(η) , i = 1, . . . , n ,

for any η.From (3.23), with (3.22), and (3.17) we have:
Proposition 3.3: The variation forms {δFi(η)}i=1,...,n are self adjoint

forms iff:
dFi(k)

dyj(k − 1)
=

dFj(k − 1)
dyi(k)

(3.24)
dFi(k)

dyj
(k) =

dFj(k)
dyi(k)

, i, j = 1, . . . , n.

Theorem 3.4: The function system

(3.25) Ei(k) =
d(L(k) + L(k − 1))

dyi(k)
, i = 1, . . . , n , k ∈ [1, N ]

is self-adjoint, where L(k) = L(k, y(k), y(k), y1(k)).
The relation (3.24) represents the Helmholtz conditions for differ-

ence equation systems with the left member given by (3.16).
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Theorem 3.5 : Let {Fi(k)}i=1,...,n , k ∈ [1, N ], be a function system
satisfying (3.24).There exists a function L(k) , k ∈ [1, N ], such that

Fi(k) =
d(L(k) + L(k − 1))

dyi(k)
, i = 1, . . . , n , k ∈ [1, N ].

Proof.: From the second relation (3.24) it results that there is L(k)
and G(k − 1) such that

Fi(k) =
dL(k)
dyi(k)

+
dG(k − 1)

dyi(k)
, i = 1, . . . , n, k ∈ [1, N ]

Since L(k) = L(k, y(k), y(k), y1(k)) and G(k − 1) = G(k − 1, y(k − 1),
y(k − 1), y1(k − 1)), from the first relation (3.24) it results G(k) = L(k) +
C,C ∈ R.

The relations (3.24) are necessary and sufficient conditions for the func-
tion system {Fi(k)}i=1,...,n , k ∈ [1, N ] , to stem from a discrete variational
principle.The functions {Fi(k)}i=1,..., n, satisfying (3.24) are called function
steming from a discrete variational principle (d.p.v.).

The function F (k) = F (k, y(k)) , y(k) ∈ bfR, stems from a d.v.p.
The associated L(k) is L(k) =

∫
F (k, y(k))dy(k). The function F (k) =

λ · y1(k) − µ · y1(k − 1) , λ6=µ, doesn’t stem from a d.v.p.The function
∼
F (k) = c(k) · F (k), with c(k) = (λ

µ )k · c(0) stems from a d.v.p.

Let {Fi(k)}i=1,...,n , k ∈ [0, N − 1], a function system and
∼
F i(k) =

Cj
i · Fj(k), with det‖Cj

i (k)‖6=0,∀k ∈ [0, N − 1].

Proposition 3.6 a)The function system {
∼
F i(k)}i=1,...,n, k ∈ [0, N − 1]

stems from a d.v.p., iff the follownig relations are verified:

(
dCh

i (k)
dyj

(k)−
dCh

j (k)
dyi(k)

) · Fh(k) + (Ch
i (k) · δj

l − Ch
j (k) · δl

i) ·
dFh(k)
dyl(k)

= 0,

(3.26)
dCh

i (k + 1)
dyj(k)

· Fh(k)− dCh
i (k)

dyj(k + 1)
· Fh(k) + Ch

i (k + 1) · dFh(k + 1)
dyj(k)

−

Ch
i (k) · dFh(k)

dyj(k + 1)
= 0
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b)If the function system {Fi(k)}i=1,...,n comes from d.v.p. then the condi-
tions (3.26) become:

(
dCh

i (k)
dyj(k)

−
dCh

j (k)
dyi(k)

) · Fh(k) + (Ch
i · δl

j − Ch
j (k) · δl

i) ·
dFh(k)
dyl(k)

= 0

(3.27)
dCh

i (k + 1)
dyj(k)

·Fh(k+1)− dCh
i (k)

dyj(k + 1)
·Fh(k)+(Ch

i (k+1) ·δl
j ·δm

h −

−Ch
i (k) · δm

j · δl
h) · dFm(k + 1)

dyl(k)
= 0

Proof.: The curent relations in Proposition 3.6 are consequences of
(3.24)

The matrix ‖Ci
j(k)‖ in Proposition 3.6 is called, an integrant factor.In

order to determine this integrant factor it must to consider special cases
with functions of the type Ci

j(k, y(k), y(k)).
Examples. The Samuelson’s Bussiness Cycle is given by aid of the

difference equation
(S) F (k) = y(k + 1)− c · (1 + v) · y(k) + c · v · y(k − 1)− 1 = 0
where y(0) , y(1) are prescribed and y(k) represents the income at the
moment k, 0 < c < 1, v > 0.

The trade cycle Hicks model is given by the equation
(H) F (k) = y(k+1)−(1−s+v)·y(k)+v·y(k+1)−A0 ·(1+g)k+1 = 0
where 0 < s < 1, v > 0.

The both models are described by aid of the function
(M) F (k) = a · y(k + 1) + b · y(k) + c · y(k − 1) + g(k)

with a6=c, y(k) ∈ R , y(0) , y(1) are given.
Proposition 3.7 a)F (k) is a self-adjoint form iff a = c;

b)If a6=c, there is C(k) such that
∼
F (k) = C(k) · F (k) is self-adjoint;

C(k) = (a
c )k.The function

∼
L(k) given by

∼
L(k) = −1

2
· ak+1

ck
· y1(k)2 +

1
2
· ak

ck
· (a + b + c) · y(k)2 +

ak

ck
· g(k) · y(k)

represents the Lagrangian associated to
∼
F (k).

For the model (S), C(k) = ( 1
c·v )k and for the model (H) c(k) = 1

vk .
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4. Conservation laws for the Lagrange function on R×Ω×Ω×Ω1

In this section we present the notion of the conservation law for the functions
L : R × Ω × Ω × Ω1−→R, as well as a discrete version of the Noether’s
theorem.

Let L(k) = L(k, y(k), y(k), y1(k)) and Ei(k) = d(L(k)+L(k−1))
dyi(k) i =

1, . . . , n , k ∈ R
The function

(4.28) L
′
(k) = L(k) + Ai · y1i(k) , Ai ∈ R

describes the same discrete dynamical system like L(k), because E
′

i(k) =
Ei(k) , k ∈ R

Let θ : R × Ω−→R × Ω be the differentiable transformation given by
(4.28)

(4.29) θ(k, y(k − 1)) = (k,
∼
y(k, y(k − 1))) k ∈ R

and θp, canonical prolongation of θ on R× Ω× Ω× Ω1.
θ is said to be a symmetry transformation of the system gen-

erated by the Lagrangian L, if θ invaries d.v.p.According to (4.28), and
L

′
(k) , θ is a symmetry transformation if (L◦θp)(k) = L(k) + L

′
(k).We

call a deformation of the symmetry θ a differentiable map Θ : I × R ×
Ω−→R × Ω , 0 ∈ I⊂R, such that Θ(0, k, y(k − 1)) = θ(k, y(k − 1)), and
Θ(ε)(k, y(k− 1)) = Θ(ε, k, y(k− 1)) are symmetry transformations of R×Ω
for any ε ∈ I.Consider a pseudo-group of diffeomorphisms {θ(ε)}ε∈I onR×Ω,

and {θp
(ε)}ε ∈ I the canonical prolongations R× Ω× Ω× Ω1.

Proposition 4.8. If {θ(ε)}ε∈I is a pseudo-group of symmetries for L,
then we have:

(4.30) (
dL(k)
dyi(k)

+
1

∆τ
·Ai) ·

∼
η

i
(k − 1) = −(

dL(k)
dyi(k + 1)

− 1
∆τ

·Ai) ·
∼
η

i
(k)

where

(4.31)
∼
η

i
(k − 1) =

d
∼
y

i

(ε)(k)
dε

|ε=0 ,
∼
η

i
(k) =

d
∼
y

i

(ε)(k + 1)
dε

|ε=0 .
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Theorem 4.9: (Discrete Noether’s Theorem). A symmetry pseudo-
group of L determines a function system L(k) which all constant along an
orbit of the discrete dynamical system described by L.

Proof.: From (4.30) it results

(Ei(k)− dL(k−1)
dyi(k) + 1

∆τ ·Ai)·
∼
η

i
(k−1) = −( dL(k)

dyi(k−1)−
1

∆τ ·Ai)·
∼
η

i
(k) , k ∈ R

Since Ei(k) = 0 along an orbit of the system, we conclude that

(4.32) L(k) = (
dL(k)

dyi(k + 1)
− 1

∆τ
·Ai) ·

∼
η

i
(k) , k ∈ R

is constant because L(k − 1) = L(k) , ∀k ∈ R. For n = 1 we have
Proposition 4.10 {∼η(k)}k∈R satisfying (4.30) are given by

(4.33)
∼
η(k) = (−1)k · ∼η(0)

k∏
p=1

(dL(p)
dy(p) + 1

∆τ A)

k∏
p=1

( dL(p)
dy(p+1) −

1
∆τ A)

and the associated function is

(4.34) L(k) = (−1)k · ∼η(0)

k∏
p=1

(dL(p)
dy(p) + 1

∆τ A)

k−1∏
p=1

( dL(p)
dy(p+1) −

1
∆τ A)

Examples: 1. For L(k) = 1
2 · ρ

k+2 · y1(k)2, and ∆τ = 1 it results
∼
η(k) = (−1)k∼η(0) , L(k) = (−1)k(ρk+2y1(k)−A)

∼
η(0)

2. For L(k) = 1
2

q1(k)2

t1(k) − V (q(k))t1(k), from Ex.4., we have L(k) =
1
2v(k)2 + V (q(k)). A variable yi(k), (i fixed) is called a cyclic variable if
∂L(k)
∂yi(k) = 0 , ∂L(k)

∂yi(k)
.If yi(k) is a cyclic variable then Li(k) = df(k)

dyi(k+1) has the
property Li(k) = Li(k − 1) , ∀k ∈ R.

5. Discrete Lagrange-Hamilton equations. Let R be a network in

R, Ω given by (2.4), Ω∗ = {p : R−→R∗n|
N∑

k=0

δij ·pi(k) ·pj(k) < ∞, p(0) =

bn , p(N) = b2} and H : R × Ω × Ω∗−→R a function of class C1 with
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respect to the variables in Ω,Ω∗; H is called a discrete Hamilton function,
denote by

(5.35) H(k) = H(k, y(k), p(k − 1))

The functional

(5.36) B(y, p) =
N−1∑
k=0

(pi(k − 1)y1i(k − 1)−H(k))∆τ

is called the action of H with respect to (y,p). The variations of the function
B(y, p) is

(5.37) δB(y, p)(η, ξ) =
N−1∑
k=1

[ξi(k − 1)y1i(k − 1) + pi(k − 1)η1i(k − 1)−

−∂H(k)
∂yi(k)

· ηi(k)− ∂H(k)
∂pi(k − 1)

ξi(k − 1)] ·∆τ

Proposition 5.11. The function (y, p) ∈ Ω×Ω∗ is a critical point for
B(y, p), iff

(5.38)
y1i(k − 1) = ∂H(k)

∂pi(k−1)

p1
i (k − 1) = − ∂H(k)

∂yi(k) , i = 1, . . . , n, k ∈ [1, N − 1]

The relations (5.38), represent the discrete Hamilton equations. Using
the transformation associated in some regularity conditions, the discrete
Hamilton equations are obtained from the discrete Euler equations [1]. Let
Rr⊂Rn , Ω, Ω∗

r ,Ω
1
n−r, and R : R× Ω∗

r × Ω1
n−r−→R, a function of class

C1, with respect to the variables in Ω, Ω∗
r , Ω1

n−r; R is called the discrete
Routh function. We denote

(5.39)
R(k) = R(k, yi(k), pa(k − 1), y1α(k)), i = 1, . . . , n,

α = r + 1, . . . , n,
a = 1, . . . , r.

The functional

(5.40) C(y, p) =
N−1∑
k=0

(pa(k − 1)y1a(k − 1)−R(k)) ·∆τ
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is called the action of R with respect to (y, p, y1). The variations of the
function C(y, p) is

(5.41)
δC(y, p)(η, ξ)=

N−1∑
k=1

[
ξa(k−1) · y1a(k−1)+pa(k−1) · η1a(k−1)−

− ∂R(k)
∂yi(k) · η

i(k)− ∂R(k)
∂pa(k−1) · ξa(k−1)− ∂R(k)

∂y1α(k) · η
1α(k)

]
·∆τ

Proposition 5.12. The function (y, p) ∈ Ω×Ω∗
r is a critical point for

C(y, p), iff

(5.42)
y1a(k − 1) = ∂R(k)

∂pa(k−1) , p1
a(k − 1) = − ∂R(k)

∂yα(k) a = 1, . . . , r

∂R(k)
∂yα(k) −

1
∆τ ( ∂R(k)

∂y1α(k) −
∂R(k−1)

∂y1α(k−1) ) = 0 , α = r + 1, . . . , n;

The relations (5.42) represent the discrete Euler-Lagrange-Hamilton (Rou-
th) equations. For r = 0, the relations (5.42) represent the discrete Euler
equations and for r = n, the relations (5.42) represent the discrete Hamilton
equations.
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