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Abstract

In this paper we show that several dynamical systems with time

delay can be described as vector fields associated to smooth functions

via a bracket of Leibniz structure. Some examples illustrate the the-

oretical considerations.
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1. Introduction

A Leibniz structure on a smooth manifold M is defined by a tensor

field B of type (2, 0). The tensor field B and a smooth function h on M ,

called a Hamiltonian function, define a vector field Xh which generates a

differential system, called a Leibniz system. Examples of Leibniz structures

are: the simplectic structures, the Poisson and almost Poisson structures

etc. If B is skewsymmetric then we have an almost simplectic structure and

if B is symmetric then we have an almost metric structure (Section 2). A

skewsymmetric tensor field P of type (2, 0), a symmetric tensor field g of type

(2, 0) and a smooth function h define a Leibniz system, which characterizes

an almost metriplectic manifold. For a skewsymmetric tensor field P of type

(2, 0), a symmetric tensor field g of type (2, 0) and two smooth functions
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h1, h2 one defines an almost Leibniz structure, which in certain conditions

is a Leibniz structure for the function h = h1 + h2. An example of almost

Leibniz system is the revisted rigid body (Section 3).

To define a differential system with time delay on a smooth manifold

M it is suitable to consider the product manifold M × M and a vector

field X ∈ X (M × M) such that X(π∗

1f) = 0, where f ∈ C∞(M) and π1 :

M×M → M is the projection. A class of such systems is represented by these

which are defined by a tensor field of type (2, 0) having certain components

null. Examples of almost Leibniz structures with time delay are: the rigid

body with time delay, the three–wave interaction with time delay etc. In

the case when the almost Leibniz structure with time delay is defined by a

skewsymmetric tensor field of type (2, 0), a symmetric tensor field of type

(2, 0) on M ×M (having certain components null) and two functions h1, h2

with some properties, one obtain the revisted differential system with time

delay associated to the previous system (Section 4).

The results of the paper allow to approach some dynamics with time

delay which are described by vector fields on M ×M having some geometric

properties as conservation laws, divergence or rotor null etc. (Section 5).

This paper presents differential systems with time delay defined by almost

Leibniz structures, examples of such systems and a numerical simulation.

Purposely the authors leave aside the analysis of the dynamics considered

since that one needs apecific methods to investigate the differential systems

with time delay.

2. Leibniz systems

Let M be a smooth manifold and C∞(M) be the ring of the smooth

functions on it. A Leibniz bracket on M is a bilinear map [·, ·] : C∞(M) ×

C∞(M) → C∞(M) which is a derivation on each entry, that is,

[fg, h] = [f, h]g + f [g, h], [f, gh] = [f, g]h+ g[f, h],

for any f, g, h ∈ C∞(M). We say that the pair (M, [·, ·]) is a Leibniz manifold.
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Let (M, [·, ·]) be a Leibniz manifold and h ∈ C∞(M). There exist two

vector fields XR
h and XL

h on M uniquely characterized by the relations

XR
h (f) := [f, h], XL

h (f) := −[h, f ], ∀f ∈ C∞(M).

We will call XR
h the Leibniz vector field associated to the Hamiltonian func-

tion h ∈ C∞(M) and we denote it always by Xh. The differential system

generated by the Leibniz vector field Xh will be called a Leibniz system or a

Leibniz dynamics.

Since [·, ·] is a derivation on each argument it only depends on the first

derivatives of the functions and thus, we can define a tensor map B : T ∗M ×

T ∗M → IR by

B(df, dg) := [f, g], for any f, g ∈ C∞(M).

We say that the Leibniz manifold (M, [·, ·]) is non degenerate whenever B is

non degenerate.

We can associate to the tensor B two vector bundle maps B#
R : T ∗M →

TM and B
#
L : T ∗M → TM defined by the relations

B(α, β) :=< α,B
#
R (β) > and B(α, β) := − < β,B

#
L (α) >

for any α, β ∈ T ∗M . (M, [·, ·]) is non degenerate iff the maps B
#
R and B

#
L

are vector bundle isomorphisms. When the bracket [·, ·] is symmetric (res-

pectively, antisymmetric) we have B
#
R = −B

#
L (respectively, B#

R = B
#
L ) and

XR
h = −XL

h (respectively, XR
h = XL

h ), for any h ∈ C∞(M).

We can define the right and left characteristic distributions

Span {XR
h | h ∈ C∞(M)} := B

#
R (T

∗M)

and

Span {XL
h | h ∈ C∞(M)} := B

#
L (T

∗M),

which coincide if the Leibniz bracket [·, ·] is either symmetric or antisymme-

tric. If aditionally (M, [·, ·]) is non degenerate then B
#
R (T

∗M) = B
#
h (T

∗M) =

TM and we can define a tensor field of type (0, 2) onM , ω : X (M)×X (M) →

C∞(M), by

ω(Xf , Xg) := [f, g], for any f, g ∈ C∞(M).

3



A function f ∈ C∞(M) such that [f, g] = 0 (respectively, [g, f ] = 0) for

any g ∈ C∞(M) is called a left (respectively, right) Casimir of the Leibniz

manifold (M, [·, ·]).

Two smooth functions h1, h2 ∈ C∞(M) on the Leibniz manifold (M, [·, ·])

are said to be equivalent if [f, h1 − h2] = 0, ∀f ∈ C∞(M) or whenever

the Leibniz vector fields Xh1, Xh2 associated to h1, respectively h2, coincide

(Xh1 = Xh2).

A Leibniz manifold (M, [·, ·]) where the bracket is antisymmetric, that is,

[f, g] = −[g, f ], ∀f, g ∈ C∞(M),

is called an almost Poisson manifold. If (M, [·, ·]) is an almost Poisson mani-

fold we define the Jacobiator of the bracket [·, ·] as the map J : C∞(M) ×

C∞(M)× C∞(M) → C∞(M) given by

J (f, g, h) :=
∑

cyclic

(f,g,h)

[[f, g], h], for any f, g, h ∈ C∞(M).

An almost Poisson manifol for which the Jacobiator is the zero map is a

Poisson manifold.

If (M, [·, ·]) is a non degenerate manifold for which the tensor field ω is a

closed 2–form on M then (M,ω) is a symplectic manifold.

We point out a relevant variety of systems described via a Leibniz bracket,

[OPB].

Let g : TM × TM → IR be a pseudometric on the smooth manifold

M , that is, a symmetric non degenerate tensor field of type (0, 2) on M .

Let g# : T ∗M → TM and g♭ : TM → T ∗M be the associated vector

bundle maps. Given any smooth function h ∈ C∞(M) we define its gradient

∇h : M → TM as the vector field on M given by ∇h = g#dh. In these

conditions let [·, ·] : C∞(M) × C∞(M) → IR be the Leibniz bracket defined

by

[f, h] := g(∇f,∇h), for any f, h ∈ C∞(M),

that is the pseudometric bracket associated to g. It is clearly symmetric

and non degenerate. The Leibniz vector field Xh associated to any function
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h ∈ C∞(M) is such that Xh = ∇h, that is Xh generates a gradient dynamical

system. In local coordinates the vector field Xh has the components

X i
h = gij

∂h

∂xj
,

where (gij) are the components of g and i, j = 1, 2, . . . , dimM .

A problem in dynamics is the study of the interactions between waves of

different frequencies with different resonance conditions. A particular case

the three–wave interaction can be formulated as a gradient dynamical system

in IR3, using the Leibniz bracket induced by the constant pseudometric

g = (gij) =




1
s1γ1

0 0

0 − 1
s2γ2

0

0 0 1
s3γ3


 ,

where the parameters s1, s2, s3 ∈ {−1, 1} and γ1, γ2, γ3 ∈ IR∗, γ1+γ2+γ3 = 0

and the Hamiltonian function h : IR3 → IR, h(x1, x2, x3) = x1x2x3. The

Leibniz vector field associated to h generates the gradient dynamical system

given by

ẋ1 = s1γ1x
2x3, ẋ2 = s2γ2x

1x3, ẋ3 = s3γ3x
1x2.

3. Almost metriplectic systems

Let M be a smooth manifold, P a skewsymmetric tensor field of type

(2, 0) and g a symmetric tensor field of type (2, 0). The map [·, ·] : C∞(M)×

C∞(M) → C∞(M) given by

[f, h] := P (f, h) + g(f, h), ∀f, h ∈ C∞(M),

defines a Leibniz bracket on M . The Leibniz vector field Xh associated to

the Hamiltonian function h ∈ C∞(M) is such that

Xh(f) = P (f, h) + g(f, h), for any f ∈ C∞(M).
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In local coordinates Xh has the components

X i
h = P ij ∂h

∂xj
+ gij

∂h

∂xj
,

where P ij = P (xi, xj), gij = g(xi, xj).

If P is a Poisson tensor field and g is a non degenerate tensor field, then

(M,P, g) is called a metriplectric manifold of the first kind. Such a structure

is studied in [Fi].

If P is a tensor field defining a simplectic structure and g is a tensor field

defining a Riemannian structure on M , then the corresponding metriplectic

manifold (M,P, g) was studied by E. Kähler ([Ka1], [Ka2], where [·, ·] was

called an interior product).

An example of a metriplectic system is the equation arising from the

Landau–Lifschitz model for the magnetization vector field x = (x1, x2, x3)T ∈

X (IR3) in an external vector field B = (B1, B2, B3)T ∈ X (IR3),

ẋ = γx× B +
λ

‖x‖2
(x× (x× B)),

where γ and λ are physical parameters. The Leibniz bracket describing the

dynamical system is

[f, h](x) = x · (∇f(x)×∇h(x)) +
λ

γ‖x‖2
(x×∇f(x)) · (x×∇h(x)) ,

where × denotes the standard cross product in IR3, ∇ is the Euclidean gradi-

ent, f, h ∈ C∞(IR3), x ∈ IR3 and h(x) = γB · x is the Hamiltonian function.

Let M be a smooth manifold and P, g ∈ T 2
0 (M) two tensor fields of type

(2, 0). Consider the map [·, (·, ·)] : C∞(M) × C∞(M) × C∞(M) → C∞(M)

defined by the relation

[f, (h1, h2)] := P (f, h1) + g(f, h2), ∀f, h1, h2 ∈ C∞(M).

Proposition 3.1. The bracket map [·, (·, ·)] satisfies the following pro-

perties:

a) [fh, (h1, h2)] = [f, (h1, h2)]h+ f [h, (h1, h2)];
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b) [f, h(h1, h2)] = h[f, (h1, h2)] + h1P (f, h) + h2g(f, h);

c) [f, l(h, h)] = l[f, (h, h)] + h[f, (l, l)],

for any f, h, l, h1, h2 ∈ C∞(M).

The bracket [·, (·, ·)] is a left derivation called an almost Leibniz bracket

and the structure (M,P, g, [·, (·, ·)] is said to be an almost Leibniz manifold.

The restriction of [·, (·, ·)] to C∞(M)×△C∞(M), where△C∞(M) is the diagonal

of C∞(M) × C∞(M), defines a Leibniz bracket on (M,P, g), because the

bracket [f, h] := [f, (h, h)], ∀f, h ∈ C∞(M) is a derivation on each argument.

If P is a Poisson tensor field and g is a non degenerate symmetric tensor

field, then (M,P, g, [·, (·, ·)]) is called a metriplectic manifold of the second

kind. Such a structure is considered in [Fi]. Given h1, h2 ∈ C∞(M) the

Leibniz vector field associated to (h1, h2) is such that

X(h1,h2)(f) = P (f, h1) + g(f, h2), ∀f ∈ C∞(M).

In local coordinates the corresponding differential system is

ẋi = [xi, (h1, h2)] = P ij ∂h1

∂xj
+ gij

∂h2

∂xj
, i, j = 1, . . .dimM.

Proposition 3.2. Let (M,P, g, [·, (·, ·)]) be an almost Leibniz manifold

with P skewsymmetric, g symmetric (respectively, a multiplectic manifold of

second kind) and let h1, h2 ∈ C∞(M) be two functions such that P (f, h2) = 0,

g(f, h1) = 0, for any f ∈ C∞(M). The Hamiltonian function h = h1 + h2

defines on M an almost metriplectic (respectively, a metriplectic) system of

the first kind.

Proof. The statement is immediate seeing that [f, h] = [f, (h, h)] =

P (f, h) + g(f, h) = P (f, h1) + P (f, h2) + g(f, h1) + g(f, h2) = P (f, h1) +

g(f, h2) = [f, (h1, h2)] for any f ∈ C∞(M).

Proposition 3.2 is useful when we consider the revisted differential system

of a (almost) Poisson differential system with a Hamiltonian function and a

Casimir function. More precisely we have

Proposition 3.3. For a (almost) Poisson differential system on M given

by the tensor field P , with a Hamiltonian function h1 and a Casimir function

h2, there exists a tensor field g such that (M,P, g, [·, (·, ·)]) is a metriplectic
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manifold of the second kind. The differential system associated to this struc-

ture is called the revisted differential system of the initial system.

The proof consists in look for a tensor field g ∈ J 2
0 (M) such that g(f, h1) =

0, ∀f ∈ C∞(M). In local coordinates, if h1i =
∂h1

∂xi
6= 0, i = 1, 2, . . . , n =

dimM and h2i =
∂h2

∂xi
then we determine the components of g from the rela-

tions h1ig
ij = 0, j = 1, 2, . . . , n. A (local) solution of this system is given by:

gij = h1ih2j for i 6= j and gii = −
∑
k=1
k 6=i

h1kh2k.

For example the rigid body with the Poisson structure

P =




0 x3 −x2

−x3 0 x1

x2 −x1 0


 ,

the Hamiltonian function h1 =
1

2
[a1(x

1)2+a2(x
2)2+a3(x

3)2] and the Casimir

function h2 =
1

2
[(x1)2 + (x2)2 + (x3)2] has the differential system

ẋ1 = (a2 − a3)x
2x3, ẋ2 = (a3 − a1)x

1x3, ẋ3 = (a1 − a2)x
1x2.

A tensor field g defining the revisted differential system has the components

g11 =−a22(x
2)2− a23(x

3)2, g22 =−a21(x
1)2− a23(x

3)2, g33 = −a21(x
1)2− a22(x

2)2,

g12 = g21 = a1a2x
1x2, g13 = g31 = a1a3x

1x3, g23 = g32 = a2a3x
2x3.

The revisted differential system is

ẋ1 = (a2 − a3)x
2x3 + a2(a1 − a2)x

1(x2)2 + a3(a1 − a3)x
1(x3)2,

ẋ2 = (a3 − a1)x
1x3 + a3(a2 − a3)x

2(x3)2 + a1(a2 − a1)x
2(x1)2,

ẋ3 = (a1 − a2)x
1x2 + a1(a3 − a1)x

3(x1)2 + a2(a3 − a1)x
3(x2)2.

4. Leibniz systems with time delay

Let M be a n–dimensional smooth manifold, the product manifold M ×

M = {(x̃, x) | x̃ ∈ M,x ∈ M} and the canonical projections π1 : M ×M →
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M , π2 : M × M → M . Let π∗

1 : C∞(M) → C∞(M × M), π∗

2 : C∞(M) →

C∞(M ×M) be the induced morphisms between the algebras of functions.

If Z is a vector field on M × M such that Z(π∗

1f) = 0, Z(π∗

2f) = 0,

for any f ∈ C∞(M), then Z = 0 (see [GHV]). If Z is a vector field on

M × M , then Z (x̃, x) = Z1 (x̃, x) + Z2 (x̃, x), for (x̃, x) ∈ M × M , where

Z1 (x̃, x) = (π1)∗Z (x̃, x), Z2 (x̃, x) = (π2)∗Z (x̃, x) and Z1 (x̃, x) ∈ Tx̃M ×M ,

Z2 (x̃, x) ∈ M ×TxM . The local coordinate representation of the vector field

(x̃, x) 7→ Z (x̃, x) is

Z (x̃, x) = Z i
1 (x̃, x)

∂

∂x̃i
+ Z i

2 (x̃, x)
∂

∂xi
.

A vector field X on M × M satisfying the condition X(π∗

1f) = 0, for

any f ∈ C∞(M) is given in a local chart by X (x̃, x) = X i (x̃, x)
∂

∂xi
. The

differential system associated to X is given by

(4.1) ẋi = X i (x̃, x) , i = 1, 2, . . . , n.

A differential system with time delay is a differential system associated

to a vector field X on M ×M for which X(π∗

1f) = 0, ∀f ∈ C∞(M) and it is

given in a local chart by

(4.2) ẋi(t) = X i (x̃(t), x(t)) , i = 1, 2, . . . , n,

where x̃(t) = x(t − τ), with τ > 0 and the initial condition x(θ) = ϕ(θ),

θ ∈ [−τ, 0] and ϕ : [−τ, 0] → M are smooth maps.

Some systems of differential equations with time delay in IRn were studied

in [AHa], [HVL]. For such a system are relevant the geometric properties

of the vector field defining that system as first integrals (constants of the

motion), Morse functions, almost metriplectic structure etc. Here is a few of

mechanical systems.

Example 4.1. The rigid body with time delay in a direction. Let

a1, a2, a3 ∈ IR, a1 6= a2, a2 6= a3, a3 6= a1 and the vector field X ∈ X (IR3×IR3)

with the components

(4.3) X1 = (a2 − a3)x̃
2x3, X2 = (a3 − a1)x

1x3, X3 = (a1 − a2)x
1x̃2.
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The corresponding differential system with time delay is

(4.4)

ẋ1(t) = (a2 − a3)x
2(t− τ)x3(t),

ẋ2(t) = (a3 − a1)x
1(t)x3(t),

ẋ3(t) = (a1 − a2)x
1(t)x2(t− τ),

with the initial condition x1(0) = x1
0, x

2(θ) = ϕ(θ), x3(0) = x3
0, x

1
0, x

3
0 ∈ IR,

ϕ : [−τ, o] → IR. If h1 (x̃, x) =
1

2
(x1)2+x2x̃2+

1

2
(x3)2, h2 (x̃, x) =

1

2
a1(x

1)2+

a2x
2x̃2 +

1

2
a3(x

3)2, then X(h1) = X(h2) = 0.

Example 4.2. The rigid body with time delay in all directions. Let

a1, a2, a3 ∈ IR be three distinct numbers and the vector field X ∈ X (IR3×IR3)

with the components

(4.5) X1 = a2x
2x̃3−a3x

3x̃2, X2 = a3x
3x̃1−a1x

1x̃3, X3 = a1x
1x̃2−a2x

2x̃1.

The corresponding differential system with time delay is

(4.6)

ẋ1(t) = a2x
2(t)x3(t− τ)− a3x

3(t)x2(t− τ),

ẋ2(t) = a3x
3(t)x1(t− τ)− a1x

1(t)x3(t− τ),

ẋ3(t) = a1x
1(t)x2(t− τ)− a2x

2(t)x1(t− τ),

with the initial condition xi(θ) = ϕi(θ), i = 1, 2, 3, θ ∈ [−τ, 0], τ ≥ 0.

If h1 ∈ C∞(IR3), h1(x) =
1

2
[(x1)2 + (x2)2 + (x3)2] and h2 ∈ C∞(IR3),

h2(x) =
1

2
[a1(x

1)2 + a2(x
2)2 + a3(x

3)2], then X(π∗

2h2) = 0 and X(π∗

1h1) =

α ∈ C∞(IR3 × IR3) with α (x̃, x) 6= 0 for (x̃, x) in an open set D ⊂ IR3 × IR3,

α (x̃, x) = a1x
1 (x̃2x3 − x̃3x2) + a2x

2 (x̃3x1 − x̃1x3) + a3x
3 (x̃1x2 − x̃2x1). h2

is a first integral for (4.6).

Example 4.3. The three–wave interaction with time delay. Let the

vector field X on IR3 × IR3 with the components

(4.7) X1 = s1γ1x̃
2x̃3, X2 = s2γ2x̃

1x̃3, X3 = s3γ3x̃
1x̃2.

The differential system with time delay generated by X is

(4.8)

ẋ1(t) = s1γ1x
2(t− τ)x3(t− τ),

ẋ2(t) = s2γ2x
1(t− τ)x3(t− τ),

ẋ3(t) = s3γ3x
1(t− τ)x2(t− τ),
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where s1, s2, s3 ∈ {−1, 1}, γ1, γ2, γ3 ∈ IR∗, γ1 + γ2 + γ3 = 0, τ ≥ 0 and the

initial condition xi(θ) = ϕi(θ), ϕi : [−τ, 0] → IR, i = 1, 2, 3. Let g be the

tensor field of type (2, 0) on IR3 × IR3 having the components g11 = s1γ1,

g22 = s2γ2, g
33 = s3γ3 and gij = 0 for i 6= j; g = gij

∂

∂x̃i
⊗

∂

∂xj
. If h ∈

C∞(IR3), h(x) = x1x2x3, then X = g(π∗

1h).

Example 4.4. The revisted rigid body with time delay. Let a1, a2, a3 be

three distinct real numbers and the vector field X ∈ X (IR3 × IR3) with the

components

(4.9)

X1 = (a2 − a3)x
2x3 + a2(a1 − a2)x̃

1x̃2x2 + a3(a1 − a3)x̃
1x̃3x3,

X2 = (a3 − a1)x
1x3 + a3(a2 − a1)x̃

2x̃3x3 + a1(a2 − a1)x̃
2x̃1x1,

X3 = (a1 − a2)x
1x2 + a1(a3 − a1)x̃

3x̃1x1 + a2(a3 − a2)x̃
3x̃2x2.

The differential system associated to X is the differential system with

time delay of the revisted rigid body. Let P be the skew symmetric tensor

field of type (2, 0) on IR3 × IR3 given by P = P ij(x)
∂

∂xi
⊗

∂

∂xj
, where

(
P ij(x)

)
=




0 x3 −x2

−x3 0 x1

x2 −x1 0




and g the symmetric tensor field of type (2, 0) on IR3 × IR3 given by g =

gij (x̃, x)
∂

∂x̃i
⊗

∂

∂xj
, where

(
gij (x̃, x)

)
=




−a22x
2x̃2− a23x

3x̃3 a1a2x̃
1x2 a1a3x̃

1x3

a1a2x̃
1x2 −a21x

1x̃1− a23x
3x̃3 a2a3x̃

2x3

a1a3x̃
1x3 a2a3x̃

2x3 −a21x̃
1x1− a22x̃

2x2


 .

If h1 (x̃) =
1

2

[(
x̃1

)2
+

(
x̃2

)2
+

(
x̃3

)2]
, h2(x) =

1

2

[
a1

(
x1

)2
+ a2(x

2)2 + a3(x
3)2

]
,

then the components (4.9) of X satisfy the relations

X i (x̃, x) = P ij(x)
∂h2

∂xj
+ gij (x̃, x)

∂h1

∂x̃j
, i, j = 1, 2, 3.
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Let T 2
0 (M ×M) be the modulus of the tensor fields of type (2, 0) on the

product manifold M ×M and let us denote

T 02 :=
{
P ∈T 2

0 (M×M) | P (π∗

1f1, π
∗

1f2)=P (π∗

1f1, π
∗

2f2) = 0, ∀f1, f2∈C∞(M)
}
,

T 11 :=
{
g∈T 2

0 (M×M) | g(π∗

1f1, π
∗

1f2) = g(π∗

2f1, π
∗

2f2) = 0, ∀f1, f2 ∈ C∞(M)
}
.

Consider P ∈T 02, g∈T 11 and the map [·, (·, ·)] : C∞(M)×C∞(M×M)×

C∞(M ×M) → C∞(M ×M) defined by the relation

[f, (h1, h2)] := P (π∗

2f, h2)+g(π∗

2f, h1), ∀f ∈ C∞(M), h1, h2 ∈ C∞(M×M).

Proposition 4.1. The bracket map [·, (·, ·)] satisfies the following pro-

perties:

a) [f1f2, (h1, h2)] = [f1, (h1, h2)]f2 + f1[f2, (h1, h2)];

b) [f, h(h1, h2)] = h[f, (h1, h2)] + h1P (π∗

2f, h) + h2g(π
∗

2f, h);

c) [f, l(h, h)] = l[f, (h, h)] + h[f, (l, l)],

for any f1, f2 ∈ C∞(M) and h, l, h1, h2 ∈ C∞(M ×M).

The bracket [·, (·, ·)] is called the almost Leibniz bracket with time de-

lay and the structure (M,P, g, [·, (·, ·)]) is said be an almost Leibniz mani-

fold with time delay. For two functions h1, h2 ∈ C∞(M × M) the relation

Xh1h2(f) = [f, (h1, h2)] defines a vector field such that Xh1h2(π
∗

1f) = 0. In

local coordinates

X i
h1h2

= P ij ∂h2

∂xj
+ gij

∂h1

∂x̃j
, i, j = 1, 2, . . . , n.

By a straighforward calculation it results

Proposition 4.2. If the tensor field P ∈ T 02(M×M) is skewsymmetric,

the tensor field g ∈ T 11(M × M) is symmetric and h1, h2 ∈ C∞(M × M)

satisfy the conditions P (π∗

2f, h1) = 0, g(π∗

2f, h2) = 0, ∀f ∈ C∞(M), then

[f, (h1, h2)] = [f, (h, h)], where h = h1 + h2.

Proposition 4.2 allows the local determination of a tensor field g in terms

of derivatives of the functions h1, h2.

Proposition 4.3 Let h1, h2 ∈ C∞(IRn × IRn),

D =

{
(x̃, x) ∈ IRn × IRn |

∂h2

∂xi
6= 0, i = 1, 2, . . . , n

}
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and let P ∈ T 02(D) be a skewsymmetric tensor field such that P (π∗

2f, π
∗

2h1) =

0, ∀f ∈ C∞(M). There exists a symmetric tensor field g ∈ T 11(D) with

g(π∗

2f, π
∗

2h2) = 0, ∀f ∈ C∞(M) such that (D,P, g, [·, (·, ·)]) is a almost Leib-

niz structure with time delay.

The proof consists in solving the system of equations gij (x̃, x)
∂h2 (x̃, x)

∂xj
=

0, i, j = 1, 2, . . . , n, (x̃, x) ∈ D. If we denote Hi2 =
∂h2

∂xi
, Hi1 =

∂h1

∂xi
then a

solution of the system gijHj2 = 0 is

gij = Hj1Hi2, i 6= j; gii = −
n∑

k=1
k 6=i

Hk1Hk2.

The differential system

(4.10) ẋi = P ij (x̃, x)
∂h2 (x̃, x)

∂xj
+ gij (x̃, x)

∂h1 (x̃, x)

∂x̃j
, i, j = 1, 2, . . . , n,

is called the revisted differential system with time delay associated to the

differential system with time delay given by

ẋi = P ij (x̃, x)
∂h2 (x̃, x)

∂xi
, i, j = 1, 2, . . . , n,

where x̃(t) = x(t− τ), τ > 0.

Example 4.5. Consider the differential system with time delay on IR3×

IR3 given by the tensor field P with the components

(P ij) =




0 x3 −x̃2

−x3 0 x1

x̃2 −x1 0




and the function h1 (x̃, x) = a1x̃
1x1 + a2x̃

2x2 + a3x̃
3x3, that is

(4.11)

ẋ1(t) = a2x
2(t− τ)x3(t)− a3x

2(t− τ)x3(t− τ),

ẋ2(t) = a3x
1(t)x3(t− τ)− a1x

1(t− τ)x3(t),

ẋ3(t) = a1x
1(t− τ)x2(t− τ)− a2x

1(t)x2(t− τ).
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The orbit of that system, for a1 = 0.6, a2 = 0.4, a3 = 0.2, is given in

Fig. 1. The function h2 (x̃, x) =
1

2
(x1)2 + x2x̃2 +

1

2
(x3)2 has the property

P (h2, f) = 0, ∀f ∈ C∞(IR3 × IR3). Based on Proposition 4.3 there exists a

tensor field g such that g(h1, f) = 0, ∀f ∈ C∞(IR3 × IR3). Its components

are

(gij) =




−a22x
2x̃2 − a3x

3x̃3 a1a2x̃
1x2 a1a3x̃

1x3

a1a2x̃
1x2 −a21x

1x̃1 − a3x
3x̃3 a2a3x̃

2x3

a1a3x̃
1x2 a2a3x̃

2x3 −a21x
1x̃1 − a22x

2x̃2


 .

The revisted differential system with time delay associated to the system

(4.11) is the following:

(4.12)

ẋ1(t) = a2x
2(t− τ)x3(t)− a3x

2(t− τ)x3(t− τ),

ẋ2(t) = a3x
1(t)x3(t− τ)− a1x

1(t− τ)x3(t)−

−a21x
1(t)x1(t− τ)x2(t)− a23x

2(t)x3(t)x3(t− τ),

ẋ3(t) = a1x
1(t− τ)x2(t− τ)− a2x

1(t)x2(t− τ).

The orbit of that system, for a1 = 0.6, a2 = 0.4, a3 = 0.2 is given in Fig.2.
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5. Conclusions

The methods utilized in our paper allow an approach of the differential

systems with time delay having some geometrical properties by means of

14



differential geometry. The authors are convinced that several other thing of

differential geometry accompany the study of the differential systems with

time delay.
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