The left and the right products, and the relative torsion theories

TURCANU ALINA

 C_2V is the topological vector locally convex spaces Hausdorff.

Definition 1. (see [1]) Let K be a coreflective subcategory, and R a reflective subcategory of category C. The pair (K,R) is called a relative torsion theory (TTR), that is, relative to the subcategory $K \cap R$, if the functors $k: C \to K$ and $r: C \to R$ check the following two relationships:

- (1) The functors k and r commuted: $k \cdot r = r \cdot k$;
- (2) For any object X of category C the square $r^X \cdot k^X = k^{rX} \cdot r^{kX}$ is pull-back and pushout.

Remark 1. In the abelian categories a torsion theory $(\mathcal{T}, \mathcal{F})$ is a TTR in relation to the intersection $\mathcal{T} \cap \mathcal{F} = 0$ [1].

Let \mathcal{K} (respectively \mathcal{R}) be o coreflective subcategory (respectively reflective) and the functors $k: C_2\mathcal{V} \to \mathcal{K}$ and $r: C_2\mathcal{V} \to \mathcal{R}$.

We note: $\mu \mathcal{K} = \{m \in \mathcal{M}ono | k(m) \in Iso\}, \varepsilon \mathcal{R} = \{e \in \mathcal{E}pi | r(e) \in Iso\}.$

We examine the following conditions:

- (S) The subcategory K is closed in relation to εR -factorobjects;
- (D) The subcategory $\mathcal R$ is closed in relation to $\mu\mathcal K$ -subobjects;

 $\mathcal{K} *_s \mathcal{R}$ (respectively $\mathcal{K} *_d \mathcal{R}$) the left(respectively the right) product of subcategories \mathcal{K} and \mathcal{R} (see [3]).

Let \widetilde{M} (respectively S) be the coreflective subcategory of spaces with Mackey (respectively with weak locally convex) topology. Referring to the structure of factorization $(\mathcal{P}''(\mathbb{R}), I''(\mathbb{R}))$ and $(\mathcal{E}'(\mathcal{K}), \mathcal{M}'(\mathcal{K}))$ see [2].

Theorem 1. Let K be a coreflective subcategory, and R - a nonzero reflective category of category C_2V . The following stated are equivalent:

(1) The pair (K, R) forms a TTR.

- (2) (a) The coreflectork: $C_2V \longrightarrow \mathcal{K}$ and reflector $r: C_2V \longrightarrow \mathcal{R}$ functors commuted: kr = rk;
 - (b) $\mathcal{K} *_{s} \mathcal{R} = \mathcal{K}$;
 - (c) $\mathcal{K} *_d \mathcal{R} = \mathcal{R}$.
- (3) (a) The functors k and r commuted: kr = rk;
 - (b) The subcategory K posed the property (S);
 - (c) The subcategory R posed the property (D). If $M \subset K$ and $S \subset R$ then the previous conditions are equivalent to the following:
- (4) (a) The functors k and r commuted: kr = rk;
 - (b) The subcategory K is I''(R)-coreflective;
 - (c) The subcategory \mathcal{R} is $\mathcal{E}'(\mathcal{K})$ -reflective.

REFERENCES

- [1] D. Botnaru, *Otnositelnye teorii krucheniya kategorii otdelimyh ravnomernyh prostranstv*, V kn.: Mat. issled., Kishinev, Shtiinca, vyp. 85, 1985, s. 43 57.
- [2] D. Botnaru, Structures bicatégorielles complémentaires. ROMAI Journal, V.5, N 2, 2009, p.5-27.
- [3] A. Ţurcanu, *The factorization of reflector functors*, Buletinul Institutului Politehnic din Iasi, Romania, 2007, t. LIII (LVII), f.5, p. 377-391.

(ȚURCANU Alina) Technical University of Moldova

E-mail address: alina.turcanu@mate.utm.md