The left and the right products, and the relative torsion theories

TURCANU Alina

$C_{2} \mathcal{V}$ is the topological vector locally convex spaces Hausdorff.
Definition 1. (see [1]) Let \mathcal{K} be a coreflective subcategory, and \mathcal{R} a reflective subcategory of category \mathcal{C}. The pair $(\mathcal{K}, \mathcal{R})$ is called a relative torsion theory (TTR), that is, relative to the subcategory $\mathcal{K} \cap \mathcal{R}$, if the functors $k: C \rightarrow \mathcal{K}$ and $r: C \rightarrow \mathcal{R}$ check the following two relationships:
(1) The functors k and r commuted: $k \cdot r=r \cdot k$;
(2) For any object X of category C the square $r^{X} \cdot k^{X}=k^{r X} \cdot r^{k X}$ is pull-back and pushout.

Remark 1. In the abelian categories a torsion theory $(\mathcal{T}, \mathcal{F})$ is a TTR in relation to the intersection $\mathcal{T} \cap \mathcal{F}=0[1]$.

Let \mathcal{K} (respectively \mathcal{R}) be o coreflective subcategory (respectively reflective) and the functors $k: \mathcal{C}_{2} \mathcal{V} \rightarrow \mathcal{K}$ and $r: C_{2} \mathcal{V} \rightarrow \mathcal{R}$.

We note: $\mu \mathcal{K}=\{m \in \mathcal{M}$ ono| $k(m) \in \mathcal{I} s o\}, \varepsilon \mathcal{R}=\{e \in \mathcal{E} p i \mid r(e) \in \mathcal{I}$ so $\}$.
We examine the following conditions:
(S) The subcategory \mathcal{K} is closed in relation to $\varepsilon \mathcal{R}$-factorobjects;
(D) The subcategory \mathcal{R} is closed in relation to $\mu \mathcal{K}$-subobjects;
$\mathcal{K} *_{s} \mathcal{R}$ (respectively $\mathcal{K} *_{d} \mathcal{R}$) the left(respectively the right) product of subcategories \mathcal{K} and \mathcal{R} (see [3]).

Let \widetilde{M} (respectively \mathcal{S}) be the coreflective subcategory of spaces with Mackey (respectively with weak locally convex) topology. Referring to the structure of factorization $\left(\mathcal{P}^{\prime \prime}(\mathbb{R}), I^{\prime \prime}(\mathbb{R})\right)$ and $\left(\mathcal{E}^{\prime}(\mathcal{K}), \mathcal{M}^{\prime}(\mathcal{K})\right)$ see [2].

Theorem 1. Let \mathcal{K} be a coreflective subcategory, and \mathcal{R} - a nonzero reflective category of category $\mathcal{C}_{2} \mathcal{V}$. The following stated are equivalent:
(1) The pair $(\mathcal{K}, \mathcal{R})$ forms a TTR.
(2) (a) The coreflectork: $C_{2} \mathcal{V} \longrightarrow \mathcal{K}$ and reflector $r: C_{2} \mathcal{V} \longrightarrow \mathcal{R}$ functors commuted: $k r=r k$;
(b) $\mathcal{K} *_{s} \mathcal{R}=\mathcal{K}$;
(c) $\mathcal{K} *_{d} \mathcal{R}=\mathcal{R}$.
(3) (a) The functors k and r commuted: $k r=r k$;
(b) The subcategory \mathcal{K} posed the property (S);
(c) The subcategory \mathcal{R} posed the property (D).

If $\mathcal{M} \subset \mathcal{K}$ and $\mathcal{S} \subset \mathcal{R}$ then the previous conditions are equivalent to the following:
(4) (a) The functors k and r commuted: $k r=r k$;
(b) The subcategory \mathcal{K} is $I^{\prime \prime}(\mathcal{R})$-coreflective;
(c) The subcategory \mathcal{R} is $\mathcal{E}^{\prime}(\mathcal{K})$-reflective.

References

[1] D. Botnaru, Otnositelnye teorii krucheniya kategorii otdelimyh ravnomernyh prostranstv, V kn.: Mat. issled., Kishinev, Shtiinca, vyp. 85, 1985, s. 43-57.
[2] D. Botnaru, Structures bicatégorielles complémentaires. ROMAI Journal, V.5, N 2, 2009, p.5-27.
[3] A. Tुurcanu, The factorization of reflector functors, Buletinul Institutului Politehnic din Iasi, Romania, 2007, t. LIII (LVII), f.5, p. 377-391.

(ȚURCANU Alina) Technical University of Moldova

E-mail address: alina.turcanu@mate.utm.md

