INFRARED REFLECTANCE INVESTIGATION OF THE STRUCTURE OF xSb₂S₃.(1-x)As₂S₃ GLASSES

J.A. KAPOUTSIS^a, E.I. KAMITSOS^a, I.P. CULEAC^b and M.S. IOVU^b
^aTheoretical and Physical Chemistry Institute,
National Hellenic Research Foundation,
48 Vass. Constantinou Ave., Athens 116 35, Greece

^bCenter of Optoelectronics of the Institute of Applied Physics, nr. 1 Academiei Str., Chisinau, MD-2028, Republic of Moldova

1. Introduction

Chalcogenide glasses have attracted much attention over the years in light of their technological applications, including infrared transmitting optical elements, acousto-optic and memory switching devices, and materials useful for image creation and storage [1]. In addition, new chalcogenide glass compositions exhibit superionic conducting properties very promising for electrochemical applications [2].

 As_2S_3 is the most extensively studied chalcogenide glass mainly because of its ease of formation, its excellent IR transmission and its resistance to atmospheric conditions and chemicals [3]. Even though As and Sb belong to the same group of the Periodic table, As_2S_3 and Sb_2S_3 do not display the same glass-forming tendency. Glassy Sb_2S_3 is very difficult to form because of the high cooling rates required [4]. However, addition of As_2S_3 to Sb_2S_3 enhances greatly the glass-forming ability of the latter, and thus, glasses in the mixed system Sb_2S_3 - As_2S_3 can be formed.

It is generally accepted that the three dimensional network of glassy As_2S_3 is built of trigonal pyramidal units, AsS_3 , which are interconnected through As-S-As bridges [5-7]. There is also evidence that the intermediate range order of this glass involves two neighboring pyramids and their shared S-atom, with the correlation length being $\sim 7\text{Å}$ [8]. The rearrangement of such coupled pyramids with respect to the neighbors has been used to explain properties such as the reversible photoinduced structural changes [8]. Correspondingly, it has been shown that the basic structural units of glassy Sb_2S_3 are the trigonal pyramids SbS_3 bonded to each other by S atoms [4]. It is of interest to note that the resulting network of glassy Sb_2S_3 exhibits lower degree of local disorder around Sb atoms than that of crystalline Sb_2S_3 [9].

Despite the general agreement on the structure of glasses X_2S_3 (X=As, Sb), the structure of glassy materials in the mixed system Sb_2S_3 -As₂S₃ remains controversial. Thus, some authors based on the results of various spectroscopic