
Understanding Distributed Program Behavior Using a
Multicast Communication Scheme

Mihai Mocanu1 and Emilian Guţuleac2

1 University of Craiova, Software Engineering Dept., Bvd.Decebal 107, Craiova,
RO-200440, Romania
���������	
���
�������

2 Technical University of Moldova, Computer Science Dept., 168 Bd. Ştefan cel Mare,
Chişinău, MD-2004, Republic of Moldova

��
��
���������
����

Summary. Events in a distributed global computation framework, unlike those in a sequential
local computation, form a partially ordered set with respect to the causality relation revealed by
timestamps. This paper describes a new logical timestamping mechanism based on multicasting,
called Collective Logical Time, and compares it with other known schemes that have been de-
veloped in the domain mainly to help in detecting undesired (global) properties of distributed
computations (such as deadlock). Unfortunately, due to excessive complexity and some unre-
alistic restrictions (such as a fixed number of processes), these schemes have produced limited
results. Some of the benefits in using our scheme are revealed, together with the possibilities for
direct applications in the development of low-level communication protocols.

1 Introduction

Tracing event execution in a distributed computing environment (DCE) might seem a
simple idea if we want to analyze a programs’ behavior, its eÆciency, or with respect to
unusual event occurrences, but the formation of correct global time measurements is a
diÆcult task. It is hard to understand an execution using a set of traces, due to the non-
deterministic duration (Non-DD) of processes, as a consequence of their distributed
nature and multiple interactions. Time is not absolute and the events in DCEs, unlike
those in a sequential computation (SC), form a partially ordered set with respect to the
causality relation, revealed by timestamps. Real time clocks are not relevant here, more
useful to track causal dependencies between global events is the “logical” time, based
either on scalar [1] or vector clocks [2] [3]. DiÆculties here are in mapping partial
order of distributed events into total ordering, or in the need to setup a constant, known-
in-advance number of processes in the DCE [4][5]. Moreover, a distributed program
may be easily perturbed by a metric code inserted, or too sensible to the application
architecture and deployment decisions.

We present here a new logical timestamping mechanism - named Collective Logical
Time (CLT), and a way to build it on top of a multicast scheme. We show also some of
its advantages over other known schemes and how can it be directly applied in the con-
struction of concurrency domains of execution, defined and denoted here as Collective
Work Domains (CWD). These can in turn be used to understand the behavior and the
implications of alternative implementations for the overall performance.

C. Badica et al. (Eds.): Intel. Distributed Comput., Systems & Appl., SCI 162, pp. 269–274, 2008.
springerlink.com c� Springer-Verlag Berlin Heidelberg 2008




