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Abstract — This paper describes a digital system design 
method based on direct translation of a Petri net model into an 
FPGA circuit netlist. A proposed CAD tool allows digital system 
specification, modeling validation and synthesis using ordinary 
Petri nets. The digital system synthesis is based on Hardware 
Petri nets that are composed of two kinds of processing 
elements (Places and Transitions) and data flow path between 
them. The use of Hardware Petri nets in CAD tools allows the 
automation of the FPGA implementation process and 
substantially reduces the design time and cost. 

Index Terms — CAD tool, digital system, direct translation, 
Hardware Petri Net, Petri Net model, system specification.

I. INTRODUCTION

The key point raised in the ITRS (International 
Technology Roadmap for Semiconductors) is that design 
cost is the greatest threat to the continued phenomenal
progress in microelectronics [1]. The constantly improving 
CAD tools can help to mitigate the problem by delivering 
faster simulation, higher capacity formal verification, and 
better logic synthesis coupled with place-and-route. 

The importance of automation of the synthesis process of 
digital systems steadily grows especially with the constant 
increase in the complexity of such systems. The use of Petri 
nets for the specification, analysis and synthesis of digital 
systems has proved very worthwhile. Petri nets are 
mathematically well founded and can be used to capture 
causality relations, concurrency of actions and conflicting 
conditions from digital systems in a natural and convenient 
way. It is possible to translate Petri nets to HDL (Hardware 
Description Language), and vice versa, making it possible to 
integrate Petri nets tools into existing design environments. 

Petri nets implementation methods can be classified into 
two types: software and hardware. Software implementation 
represents the emulation of Petri nets using computer 
software, which usually takes a long time. It is widely used 
in modeling and performance evaluation problems.  
Hardware implementation of Petri nets is done especially in 
FPGA (Field Programmable Gate Arrays) circuits. The
advantage of FPGA technology is that the interconnection 
patterns inherent in the Petri net structural description can be 
very flexibly mapped to the FPGA structure. The possibility 
of a run-time reconfiguration allows the use of adoptive 
algorithms that can reduce the time that is necessary for 
Petri Net simulation. Hardware implementation methods of 
Petri nets can be divided into direct translation methods 
[2,3] and logic synthesis methods [4,5]. Logic synthesis 
methods often suffer from the state explosion problem 
because most modern systems are typically modeled as 
concurrent systems. Direct translation methods guarantee an 

implementation by construction. The size of the obtained 
circuits is linear on the size of the specification. 

This paper focuses on some of opportunities of Petri nets 
utilization in digital systems design based on direct 
translation of the behavioral model into FPGA circuits. A 
proposed CAD tool allows digital system specification, 
modeling and implementation using ordinary Petri nets. The 
synthesizable AHDL code is generated from a Petri net 
model. Proposed method makes possible the structured and 
flexible FPGA implementation of a digital system.    

II. PETRI NET SPECIFICATION

a) Petri net definition

A Petri net (PN) is a 4-tuple  0, , ,P T F M  [6, 7], 

where:

 1 2, ,..., NP p p p is a finite and non-empty set of 

places;

 1 2, ,..., LT t t t is a finite and non-empty set of 

transitions ( TP );

      F P T T P  is a flow relation that defines 

directed arcs from places to transitions   P T  and 

transitions to places   T P ;

 0 0 0 0
1 2, , ..., NM m m m is the initial marking.

An ordinary PN is a net where each arc has a weight that 
is equal to 1. A PN is represented as a graph with two types 
of nodes: circles are used to denote places and bars or boxes, 
are used for transitions. Directed arcs between places and 
transitions and vice versa, denote the flow relation. A 
marking of a PN is depicted with tokens. A transition is said 
to be enabled under a given marking, if all its input places 
contain at least one token. An enable transition can fire, 
producing a new marking. The firing of a transition removes 
one token from each input place and adds one token into 
each output place of the transition. 

b) Petri net properties
The behavioral properties of PN are very important for 

modeling, analyzing, verification and validation of digital
systems.

A PN is said to be finite if sets P and T are finite.
A PN is said to be k-bounded if in all reachable marking 

no place has more than k tokens.
A 1-bounded PN is called a safe PN.
A marking m is said to be reachable from the initial 

marking m0 if exists a sequence of firings   that transforms 
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m0 to m. The set of markings of a net that can be reached 
from its initial marking by means of all possible firings of 
transitions is called the reachability set of the PN. It can be 
represented as a graph, called the reachability graph of the 
net, with the nodes labeled with the markings and the arcs 
labeled with transitions. 

A PN is said to be reversible if for any marking m, the 
initial marking m0 is reachable from m.

A transition T of a PN is said to be live if for any 
reachable marking m there exists a marking m   reachable 
from m at which this transition is enabled. A PN is said to be 
live if every transition is live. This is called a strong form of
PN liveness, in which every operation can be activated at 
some state when the system starts at any of its allowable 
states. A weaker form of liveness requires a transition to be 
enabled at least once at some reachable marking. A 
reachable marking m at which no transition is enabled is 
called a deadlock. A PN is said to be deadlock-free if its 
reachability set includes no deadlocks. Presence of 
deadlocks is regarded as an error in a system which operates 
in cycles. 

c) Petri net analysis
There are several methods for analyzing the PN dynamic 

behavior. The most common one is to build a reachability 
set which represent all possible states of the system. This 
method is expensive because the reachable markings may 
grow exponentially with the number of transitions in the PN.

A few methods have been proposed to overcome the 
state space explosion. One of them is the stubborn set 
method [8]. This method partially represents the reachability 
set. It uses the fact that interleaving (possible orderings of 
concurrent transitions) lead to the same marking. Although 
efficient in finding deadlocks, it does not produce a 
complete representation of the reachable state space. 
Another method is so called PN symbolic traversal [9]. It 
uses implicit representation of the reachability set in the 
form of Binary Decision Diagrams (BDDs) which are 
canonical representations of Boolean functions in graphical 
form. This method is efficient in analysis of “state-based” 
properties such as freedom from deadlock. The third method 
is called PN unfolding [11]. It is based on representation of 
full reachability graph using partial orders preserving 
relations between transition occurrences. A transition 
occurrence is a unique event associated with a single act of 
firing of the transition. Since all reachable markings are 
represented in the PN unfolding, the concurrency relation 
for two transitions can easily be obtained.

III. HARDWARE PETRI NETS MODELS

The computer-based synthesis of the digital system from 
Petri net level to logic design level requests the adaptation 
of the Petri net model to its hardware implemented model. 
The digital system model is considered a set of processing 
elements with data flow path between them. The 
corresponding Petri net model contains two kinds of 
processing elements iP  and jT . The arcs between them 

represent the data flow paths. The arc from processing 
element iP  to processing element jT  is denoted as i jP T

and the arc from processing element jT  to processing 

element iP  is denoted as j iT P . In the hardware 

implemented PN model the data flow depends on the 
topology of the net. 

A Hardware Petri Net (HPN) is defined as reunion 
between sets of processing elements and data flows.

S T I In OutRPH T P A A A A A P P          ,
where:

 1 2 LT T ,T ,...,T , T   is a set of processing 

elements, called transitions;

 1 2, ,..., NP P P P ,   P    is a set of processing 

elements, called places;

 , 1,iA A i N   ,   A  is a set of arcs j iT P

that represent the condition when the number of tokens in 
the place is increased and is defined as follows: 
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 , 1,  iA A i N , 
  A  is a set of arcs 

j iT P  that represent the condition when the number of 

tokens in the place is decreased and is defined as follows:
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;

 , 1, S S
jA A j L ,  SA  is a set of state arcs

i jP T  that determine the enable firing condition of the 

transition jT  related to the marking of the place iP the arc 

is connected with. This set is defined as follows:

1 ,  
1, , 1,

0, .

S
ij i jS

j S
ij

a P T
A i N j L

a otherwise

   



;

State arc connects an input place to a transition and has 
the ability to check whether a place has a token. The 
presence of a state arc that connects an input place to a 
transition means that the transition is only enabled if the 
input place has a token. The firing changes the marking in 
the place that is connected to the state arc.

 , 1,T T
jA A j L  , 

TA    is a set of test arcs,

which has the same function as the set of state arcs, but the 
firing does not change the marking in the place that is 
connected to the test arc.

1 ,  
1, , 1,

0, .

T
ij i jT

j T
ij

a P T
A i N j L

a otherwise

   



;

 , 1,I I
jA A j L  , 

IA   is a set of inhibitor

arcs, which provides an enabling function, when the place 
stores no tokens. It is defined as follows:

1 ,  
1, , 1,

0, .

I
ij i jI

j I
ij

a P T
A i N j L

a otherwise

   



;

Inhibitor arc connects an input place to a transition and 
has the ability to test whether a place is empty. The presence 
of an inhibitor arc between a place and a transition means 
that the transition is enabled if the input place has no token. 
The firing does not change the marking in the place that is 
connected to the inhibitor arc.
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 , 1, In In In
jP P j L , InP P   is a set of processing 

elements jP  that represent the input signals;

 , 1, Out Out Out
jP P j L , OutP P  is a set of 

processing elements jP  that represent the output signals;

The interaction of the control unit, represented by HPN
and the external system is done through input and output 

signals that are given by processing elements InP  and 
OutP (Figure 1.)

InP OutPHPN
Controlled

system

Figure 1. The interaction of the HPN model with external 
system.

IV. PROCESSING ELEMENTS SYNTHESIS

The processing element T prepares the data processing 

operation. After analyzing of the global state 

 IiPmS ii
k ,1),,(   at the step k  of data 

processing, the condition for step 1k   of data processing 

operation is formed.

The behavior of the processing element T may be 

described as follows: if in each input place of a transition T

there is a token, then the firing condition of T occurs. In this 

case tokens are removed from all input places and are placed 

into all output places. In figure 2(a) is shown a transition 

with four input and three output places. P1 and P2 are 

connected with T1 by state arcs, P3 is connected by inhibitor 

arc and P4 is connected by a test arc. The logic 

implementation (Figure 2 (b)) represents an NAND gate 

with an additional enable input En that allows the firing of 

the transition when all its input connections are active. The 

logic symbol for the processing element Transition is given 

in Figure 2(c).

The processing element P  stores the state value and 

performs the increment and decrement operation of the 

number of tokens. The increment operation occurs when one 

of the input transitions of the processing element P  fires. 

The decrement operation occurs when one of the output 

transition of the processing element P  fires. The number of 

tokens in P at the step 1k  of data processing, denoted 

by 1k
im  , is changed according to the following rules:
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
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i , ja 

(c)
Figure 2. An example of possible connections to a 

transition (a), logic implementation of the presented 
example (b) and logic symbol of the processing 

element Transition (c).
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 ; 

where: k
im is the number of tokens in iP at the step k of 

data processing, iL  and iL  are the total number of 

increment and decrement arcs to the place iP , 

1max max
i( m i , N ) M    represents the maximal number 

of tokens that can be stored in  iP . The best way to 

implement a place is to use a counter with a combinational 
input logic. In Petri net modeling tasks it is important the 
exact number of tokens in the place. When a Hardware Petri 
net model works as a digital system it is enough to check the 
presence or absence of the tokens in the place. In Figure 3(a) 
an example of a place with three input and three output 
transitions is presented. The implementation logic and logic 
symbol are given in Figure 3(b) and 3(c), respectively, 
where: CLK – clock signal, )/(/ RSRESETSET - an 

asynchronous set or reset signal to install the initial marking 
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M0; Inc- inputs used to increment the number of tokens in a  
place; Dec- inputs used to decrement the number of tokens 
in  a place;

t1

t2

t3

t4

p1

t5

(a)
CT

CLK

S/R

CLK

Set/Reset

11,a

1 5,a
1 4,a
1 3,a
2 1,a

Pout

Inc

Dec

(b)

CLK

S/R

CLK

Set/Reset

Pout
Inc

Dec

P

 i , ja

 j ,ia

(c)
Figure 3. An example of possible connections to a place 
(a), logic implementation of the presented example (b) 
and logic symbol of the processing element Place (c).

V. DESIGN FLOW

The digital system design flow is presented in Figure 4. 
Design steps description:
PN Models Source – Petri net model that is proposed 

for analyzing (in graphical form);
VPNP Tool - software tool that allows inserting and 

modifying the Petri net model interactivelly;
PN Models Library – the library with Petri net models;
Analysis (Reachability graph & Structural analysis –

The proposed Petri net model is analyzed in order to 
determine the set of reachable states and to form the 
reachability graph. The structural analysis determines the 
main properties of the model such as its reachability, 
liveness and reversibility;

MI and MO generation – incidence matrix and initial 
marking generation and their storage in certain files;

HDL Compiler – HDL code compilation based on 
matrixes MI and MO;

HDL Objects Library – the library with standard HDL 
objects that are used to form HDL code of a Petri net;

HDL code – the obtained after compilation HDL code;
Max Plus + II Design Tool – MAX+PLUS II software 

is a fully integrated, architecture-independent package for 
designing logic with ALTERA programmable logic devices;

FPGA or CPLD Device – FPGA or CPLD configuration 
of the Petri net model.

Figure 4. Design flow of the Petri net-based digital 
system.

VI. DESIGN EXAMPLE

As a design example a parallel to sequential code 
controller is introduced. A controller consists of a RAM for  
storage of data to be converted, an 8-bit shift right register 
Rg, a data modulation unit DM, a memory address counter 
CT Adr, a counter for register Rg bits and a Petri net-based 
control unit RPH (Figure 5). The conversion operation 
begins when START signal and Rst signal are set. Signal RD
initialize the read operation from RAM with address ADR. 
Inc signal is used to increment the address code. EA is the 
signal that signalizes the end of the address space.  The 
extracted data are written in Rg when signal Load is active. 
The content of Rg is shifted right, bit by bit, using signal 
ShR till signal ERg is generated (after eight shifts). Each 
output bit from Rg is modulated in DM. The modulation 
time is controlled by signals OEs and OEe. When the 
conversion operation is finished, signal EoP is set.

Figure 5. Parallel to sequential code controller.

The corresponding Petri net model that is used as a design 
entry and simulation results are shown in Figure 6 and 
Figure 7, respectively. The simulation results are presented 
for 8-bit data code conversion.
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VII. CONCLUSION

In this paper an approach for the digital systems design 
from Petri nets models has been presented. The use of Petri 
nets allows interplay of different formal tasks, such as 
synthesis, verification and performance evaluation, to be 
carried out within the single modeling framework. The 
design flow starts with the behavioral specification of the 
digital system using a Petri net model. The main properties 
of the model (reachability, liveness, reversibility) are
analyzed using a VPNP software tool. Then the direct 
translation of the Petri net model into AHDL code is done 
based on Hardware Petri net analyzing. The use of 
Hardware Petri nets in CAD tools allows the automation of 
the FPGA implementation process and substantially reduces 
the design time and efforts.  The method can be used for the 
synthesis of relatively large circuits when space and speed 
constrains are not critical.
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I. INTRODUCTION


The key point raised in the ITRS (International Technology Roadmap for Semiconductors) is that design cost is the greatest threat to the continued phenomenal progress in microelectronics [1]. The constantly improving CAD tools can help to mitigate the problem by delivering faster simulation, higher capacity formal verification, and better logic synthesis coupled with place-and-route. 


The importance of automation of the synthesis process of digital systems steadily grows especially with the constant increase in the complexity of such systems. The use of Petri nets for the specification, analysis and synthesis of digital systems has proved very worthwhile. Petri nets are mathematically well founded and can be used to capture causality relations, concurrency of actions and conflicting conditions from digital systems in a natural and convenient way. It is possible to translate Petri nets to HDL (Hardware Description Language), and vice versa, making it possible to integrate Petri nets tools into existing design environments. 


Petri nets implementation methods can be classified into two types: software and hardware. Software implementation represents the emulation of Petri nets using computer software, which usually takes a long time. It is widely used in modeling and performance evaluation problems.  Hardware implementation of Petri nets is done especially in FPGA (Field Programmable Gate Arrays) circuits. The advantage of FPGA technology is that the interconnection patterns inherent in the Petri net structural description can be very flexibly mapped to the FPGA structure. The possibility of a run-time reconfiguration allows the use of adoptive algorithms that can reduce the time that is necessary for Petri Net simulation. Hardware implementation methods of Petri nets can be divided into direct translation methods [2,3] and logic synthesis methods [4,5]. Logic synthesis methods often suffer from the state explosion problem because most modern systems are typically modeled as concurrent systems. Direct translation methods guarantee an implementation by construction. The size of the obtained circuits is linear on the size of the specification. 


This paper focuses on some of opportunities of Petri nets utilization in digital systems design based on direct translation of the behavioral model into FPGA circuits. A proposed CAD tool allows digital system specification, modeling and implementation using ordinary Petri nets. The synthesizable AHDL code is generated from a Petri net model. Proposed method makes possible the structured and flexible FPGA implementation of a digital system.    


II. PETRI NET SPECIFICATION

a) Petri net definition

A Petri net (PN) is a 4-tuple [image: image1.wmf](
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An ordinary PN is a net where each arc has a weight that is equal to 1. A PN is represented as a graph with two types of nodes: circles are used to denote places and bars or boxes, are used for transitions. Directed arcs between places and transitions and vice versa, denote the flow relation. A marking of a PN is depicted with tokens. A transition is said to be enabled under a given marking, if all its input places contain at least one token. An enable transition can fire, producing a new marking. The firing of a transition removes one token from each input place and adds one token into each output place of the transition. 


b) Petri net properties


The behavioral properties of PN are very important for modeling, analyzing, verification and validation of digital systems.


A PN is said to be finite if sets P and T are finite.


A PN is said to be k-bounded if in all reachable marking no place has more than k tokens. 

A 1-bounded PN is called a safe PN.


A marking m is said to be reachable from the initial marking m0 if exists a sequence of firings [image: image9.wmf]s


 that transforms m0 to m. The set of markings of a net that can be reached from its initial marking by means of all possible firings of transitions is called the reachability set of the PN. It can be represented as a graph, called the reachability graph of the net, with the nodes labeled with the markings and the arcs labeled with transitions. 


A PN is said to be reversible if for any marking m, the initial marking m0 is reachable from m.


A transition T of a PN is said to be live if for any reachable marking m there exists a marking [image: image10.wmf]m


¢


 reachable from m at which this transition is enabled. A PN is said to be live if every transition is live. This is called a strong form of PN liveness, in which every operation can be activated at some state when the system starts at any of its allowable states. A weaker form of liveness requires a transition to be enabled at least once at some reachable marking. A reachable marking m at which no transition is enabled is called a deadlock. A PN is said to be deadlock-free if its reachability set includes no deadlocks. Presence of deadlocks is regarded as an error in a system which operates in cycles. 


c) Petri net analysis


There are several methods for analyzing the PN dynamic behavior. The most common one is to build a reachability set which represent all possible states of the system. This method is expensive because the reachable markings may grow exponentially with the number of transitions in the PN.


A few methods have been proposed to overcome the state space explosion. One of them is the stubborn set method [8]. This method partially represents the reachability set. It uses the fact that interleaving (possible orderings of concurrent transitions) lead to the same marking. Although efficient in finding deadlocks, it does not produce a complete representation of the reachable state space. Another method is so called PN symbolic traversal [9]. It uses implicit representation of the reachability set in the form of Binary Decision Diagrams (BDDs) which are canonical representations of Boolean functions in graphical form. This method is efficient in analysis of “state-based” properties such as freedom from deadlock. The third method is called PN unfolding [11]. It is based on representation of full reachability graph using partial orders preserving relations between transition occurrences. A transition occurrence is a unique event associated with a single act of firing of the transition. Since all reachable markings are represented in the PN unfolding, the concurrency relation for two transitions can easily be obtained.


III. HARDWARE PETRI NETS MODELS

The computer-based synthesis of the digital system from Petri net level to logic design level requests the adaptation of the Petri net model to its hardware implemented model. The digital system model is considered a set of processing elements with data flow path between them. The corresponding Petri net model contains two kinds of processing elements [image: image11.wmf]i
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. The arcs between them represent the data flow paths. The arc from processing element[image: image13.wmf]i
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 to processing element [image: image14.wmf]j


T
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 and the arc from processing element [image: image16.wmf]j
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. In the hardware implemented PN model the data flow depends on the topology of the net. 


A Hardware Petri Net (HPN) is defined as reunion between sets of processing elements and data flows.
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  is a set of processing elements, called transitions;
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   is a set of processing elements, called places;
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 that represent the condition when the number of tokens in the place is increased and is defined as follows: 
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 that represent the condition when the number of tokens in the place is decreased and is defined as follows:
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 is a set of state arcs [image: image34.wmf]a
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 that determine the enable firing condition of the transition [image: image35.wmf]j
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 related to the marking of the place [image: image36.wmf]i
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 the arc is connected with. This set is defined as follows:
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State arc connects an input place to a transition and has the ability to check whether a place has a token. The presence of a state arc that connects an input place to a transition means that the transition is only enabled if the input place has a token. The firing changes the marking in the place that is connected to the state arc. 
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 is a set of test arcs, which has the same function as the set of state arcs, but the firing does not change the marking in the place that is connected to the test arc. 
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is a set of inhibitor arcs, which provides an enabling function, when the place stores no tokens. It is defined as follows:
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Inhibitor arc connects an input place to a transition and has the ability to test whether a place is empty. The presence of an inhibitor arc between a place and a transition means that the transition is enabled if the input place has no token. The firing does not change the marking in the place that is connected to the inhibitor arc. 
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  is a set of processing elements [image: image46.wmf]j
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 that represent the input signals;
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 is a set of processing elements [image: image49.wmf]j
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 that represent the output signals;


The interaction of the control unit, represented by HPN and the external system is done through input and output signals that are given by processing elements 
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 (Figure 1.)
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Figure 1. The interaction of the HPN model with external system.


IV. PROCESSING ELEMENTS SYNTHESIS

The processing element T prepares the data processing operation. After analyzing of the global state 

[image: image53.wmf]{


}


I


i


P


m


S


i


i


k


,


1


),


,


(


=


"


=


 at the step 

[image: image54.wmf]k


 of data processing, the condition for step 
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 of data processing operation is formed.


The behavior of the processing element T may be described as follows: if in each input place of a transition T there is a token, then the firing condition of T occurs. In this case tokens are removed from all input places and are placed into all output places. In figure 2(a) is shown a transition with four input and three output places. P1 and P2 are connected with T1 by state arcs, P3 is connected by inhibitor arc and P4 is connected by a test arc. The logic implementation (Figure 2 (b)) represents an NAND gate with an additional enable input En that allows the firing of the transition when all its input connections are active. The logic symbol for the processing element Transition is given in Figure 2(c).

The processing element [image: image56.wmf]P


 stores the state value and performs the increment and decrement operation of the number of tokens. The increment operation occurs when one of the input transitions of the processing element [image: image57.wmf]P


 fires. The decrement operation occurs when one of the output transition of the processing element [image: image58.wmf]P


 fires. The number of tokens in [image: image59.wmf]P


 at the step [image: image60.wmf]1


k


+


of data processing, denoted by[image: image61.wmf]1


k


i


m


+


, is changed according to the following rules:


		[image: image62.emf]p1


p2


p3


p4


p5


p6


p7


t1






		(a)



		[image: image63.wmf]11


S


,


a


21


S


,


a


t1


31


I


,


a


En


41


T


,


a


11


,


a


-


12


,


a


-


17


+


,


a


15


+


,


a


16


+


,


a






		(b)



		[image: image64.wmf]En


&


{


{


T


Tout


S


i,j


a


M


I


i,j


a


M


{


T


i,j


a


M






		(c)



		Figure 2. An example of possible connections to a transition (a), logic implementation of the presented example (b) and logic symbol of the processing element Transition (c).
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 are the total number of increment and decrement arcs to the place [image: image71.wmf]i
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 represents the maximal number of tokens that can be stored in  [image: image73.wmf]i
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. The best way to implement a place is to use a counter with a combinational input logic. In Petri net modeling tasks it is important the exact number of tokens in the place. When a Hardware Petri net model works as a digital system it is enough to check the presence or absence of the tokens in the place. In Figure 3(a) an example of a place with three input and three output transitions is presented. The implementation logic and logic symbol are given in Figure 3(b) and 3(c), respectively, where: CLK – clock signal, [image: image74.wmf])
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 - an asynchronous set or reset signal to install the initial marking M0; Inc- inputs used to increment the number of tokens in a  place; Dec- inputs used to decrement the number of tokens in  a place;
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		Figure 3. An example of possible connections to a place (a), logic implementation of the presented example (b) and logic symbol of the processing element Place (c).





V. DESIGN FLOW

The digital system design flow is presented in Figure 4. 


Design steps description:


PN Models Source – Petri net model that is proposed for analyzing (in graphical form);


VPNP Tool - software tool that allows inserting and modifying the Petri net model interactivelly;


PN Models Library – the library with Petri net models;


Analysis (Reachability graph & Structural analysis – The proposed Petri net model is analyzed in order to determine the set of reachable states and to form the reachability graph. The structural analysis determines the main properties of the model such as its reachability, liveness and reversibility;


MI and MO generation – incidence matrix and initial marking generation and their storage in certain files;


HDL Compiler – HDL code compilation based on matrixes MI and MO;


HDL Objects Library – the library with standard HDL objects that are used to form HDL code of a Petri net;


HDL code – the obtained after compilation HDL code;


Max Plus + II Design Tool – MAX+PLUS II software is a fully integrated, architecture-independent package for designing logic with ALTERA programmable logic devices;


FPGA or CPLD Device – FPGA or CPLD configuration of the Petri net model.
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		Figure 4. Design flow of the Petri net-based digital system.





VI. DESIGN EXAMPLE

As a design example a parallel to sequential code controller is introduced. A controller consists of a RAM for  storage of data to be converted, an 8-bit shift right register Rg, a data modulation unit DM, a memory address counter CT Adr, a counter for register Rg bits and a Petri net-based control unit RPH (Figure 5). The conversion operation begins when START signal and Rst signal are set. Signal RD initialize the read operation from RAM with address ADR. Inc signal is used to increment the address code. EA is the signal that signalizes the end of the address space.  The extracted data are written in Rg when signal Load is active. The content of Rg is shifted right, bit by bit, using signal ShR till signal ERg is generated (after eight shifts). Each output bit from Rg is modulated in DM. The modulation time is controlled by signals OEs and OEe. When the conversion operation is finished, signal EoP is set.
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		Figure 5. Parallel to sequential code controller.





The corresponding Petri net model that is used as a design entry and simulation results are shown in Figure 6 and Figure 7, respectively. The simulation results are presented for 8-bit data code conversion.

VII. CONCLUSION

In this paper an approach for the digital systems design from Petri nets models has been presented. The use of Petri nets allows interplay of different formal tasks, such as synthesis, verification and performance evaluation, to be carried out within the single modeling framework. The design flow starts with the behavioral specification of the digital system using a Petri net model. The main properties of the model (reachability, liveness, reversibility) are analyzed using a VPNP software tool. Then the direct translation of the Petri net model into AHDL code is done based on Hardware Petri net analyzing. The use of Hardware Petri nets in CAD tools allows the automation of the FPGA implementation process and substantially reduces the design time and efforts.  The method can be used for the synthesis of relatively large circuits when space and speed constrains are not critical.
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		Figure 6. Petri net model for parallel to sequential data conversion.
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		Figure 7. Simulation results.
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