
11th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

 149

Abstract — This paper describes a digital system design
method based on direct translation of a Petri net model into an
FPGA circuit netlist. A proposed CAD tool allows digital system
specification, modeling validation and synthesis using ordinary
Petri nets. The digital system synthesis is based on Hardware
Petri nets that are composed of two kinds of processing
elements (Places and Transitions) and data flow path between
them. The use of Hardware Petri nets in CAD tools allows the
automation of the FPGA implementation process and
substantially reduces the design time and cost.

Index Terms — CAD tool, digital system, direct translation,
Hardware Petri Net, Petri Net model, system specification.

I. INTRODUCTION

The key point raised in the ITRS (International
Technology Roadmap for Semiconductors) is that design
cost is the greatest threat to the continued phenomenal
progress in microelectronics [1]. The constantly improving
CAD tools can help to mitigate the problem by delivering
faster simulation, higher capacity formal verification, and
better logic synthesis coupled with place-and-route.

The importance of automation of the synthesis process of
digital systems steadily grows especially with the constant
increase in the complexity of such systems. The use of Petri
nets for the specification, analysis and synthesis of digital
systems has proved very worthwhile. Petri nets are
mathematically well founded and can be used to capture
causality relations, concurrency of actions and conflicting
conditions from digital systems in a natural and convenient
way. It is possible to translate Petri nets to HDL (Hardware
Description Language), and vice versa, making it possible to
integrate Petri nets tools into existing design environments.

Petri nets implementation methods can be classified into
two types: software and hardware. Software implementation
represents the emulation of Petri nets using computer
software, which usually takes a long time. It is widely used
in modeling and performance evaluation problems.
Hardware implementation of Petri nets is done especially in
FPGA (Field Programmable Gate Arrays) circuits. The
advantage of FPGA technology is that the interconnection
patterns inherent in the Petri net structural description can be
very flexibly mapped to the FPGA structure. The possibility
of a run-time reconfiguration allows the use of adoptive
algorithms that can reduce the time that is necessary for
Petri Net simulation. Hardware implementation methods of
Petri nets can be divided into direct translation methods
[2,3] and logic synthesis methods [4,5]. Logic synthesis
methods often suffer from the state explosion problem
because most modern systems are typically modeled as
concurrent systems. Direct translation methods guarantee an

implementation by construction. The size of the obtained
circuits is linear on the size of the specification.

This paper focuses on some of opportunities of Petri nets
utilization in digital systems design based on direct
translation of the behavioral model into FPGA circuits. A
proposed CAD tool allows digital system specification,
modeling and implementation using ordinary Petri nets. The
synthesizable AHDL code is generated from a Petri net
model. Proposed method makes possible the structured and
flexible FPGA implementation of a digital system.

II. PETRI NET SPECIFICATION

a) Petri net definition

A Petri net (PN) is a 4-tuple  0, , ,P T F M [6, 7],

where:

 1 2, ,..., NP p p p is a finite and non-empty set of

places;

 1 2, ,..., LT t t t is a finite and non-empty set of

transitions (TP);

      F P T T P is a flow relation that defines

directed arcs from places to transitions   P T and

transitions to places   T P ;

 0 0 0 0
1 2, , ..., NM m m m is the initial marking.

An ordinary PN is a net where each arc has a weight that
is equal to 1. A PN is represented as a graph with two types
of nodes: circles are used to denote places and bars or boxes,
are used for transitions. Directed arcs between places and
transitions and vice versa, denote the flow relation. A
marking of a PN is depicted with tokens. A transition is said
to be enabled under a given marking, if all its input places
contain at least one token. An enable transition can fire,
producing a new marking. The firing of a transition removes
one token from each input place and adds one token into
each output place of the transition.

b) Petri net properties
The behavioral properties of PN are very important for

modeling, analyzing, verification and validation of digital
systems.

A PN is said to be finite if sets P and T are finite.
A PN is said to be k-bounded if in all reachable marking

no place has more than k tokens.
A 1-bounded PN is called a safe PN.
A marking m is said to be reachable from the initial

marking m0 if exists a sequence of firings  that transforms

Digital Systems Synthesis based on Direct
Translation of Petri Net Model

Viorica SUDACEVSCHI, Victor ABABII, Emilian GUTULEAC, Diana PALII
Technical University of Moldova

str.Stefan cel Mare nr. 168, MD-2004 Chisinau
svm@mail.utm.md, ababii@mail.utm.md, egutuleac@mail.utm.md

11th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

 150

m0 to m. The set of markings of a net that can be reached
from its initial marking by means of all possible firings of
transitions is called the reachability set of the PN. It can be
represented as a graph, called the reachability graph of the
net, with the nodes labeled with the markings and the arcs
labeled with transitions.

A PN is said to be reversible if for any marking m, the
initial marking m0 is reachable from m.

A transition T of a PN is said to be live if for any
reachable marking m there exists a marking m  reachable
from m at which this transition is enabled. A PN is said to be
live if every transition is live. This is called a strong form of
PN liveness, in which every operation can be activated at
some state when the system starts at any of its allowable
states. A weaker form of liveness requires a transition to be
enabled at least once at some reachable marking. A
reachable marking m at which no transition is enabled is
called a deadlock. A PN is said to be deadlock-free if its
reachability set includes no deadlocks. Presence of
deadlocks is regarded as an error in a system which operates
in cycles.

c) Petri net analysis
There are several methods for analyzing the PN dynamic

behavior. The most common one is to build a reachability
set which represent all possible states of the system. This
method is expensive because the reachable markings may
grow exponentially with the number of transitions in the PN.

A few methods have been proposed to overcome the
state space explosion. One of them is the stubborn set
method [8]. This method partially represents the reachability
set. It uses the fact that interleaving (possible orderings of
concurrent transitions) lead to the same marking. Although
efficient in finding deadlocks, it does not produce a
complete representation of the reachable state space.
Another method is so called PN symbolic traversal [9]. It
uses implicit representation of the reachability set in the
form of Binary Decision Diagrams (BDDs) which are
canonical representations of Boolean functions in graphical
form. This method is efficient in analysis of “state-based”
properties such as freedom from deadlock. The third method
is called PN unfolding [11]. It is based on representation of
full reachability graph using partial orders preserving
relations between transition occurrences. A transition
occurrence is a unique event associated with a single act of
firing of the transition. Since all reachable markings are
represented in the PN unfolding, the concurrency relation
for two transitions can easily be obtained.

III. HARDWARE PETRI NETS MODELS

The computer-based synthesis of the digital system from
Petri net level to logic design level requests the adaptation
of the Petri net model to its hardware implemented model.
The digital system model is considered a set of processing
elements with data flow path between them. The
corresponding Petri net model contains two kinds of
processing elements iP and jT . The arcs between them

represent the data flow paths. The arc from processing
element iP to processing element jT is denoted as i jP T

and the arc from processing element jT to processing

element iP is denoted as j iT P . In the hardware

implemented PN model the data flow depends on the
topology of the net.

A Hardware Petri Net (HPN) is defined as reunion
between sets of processing elements and data flows.

S T I In OutRPH T P A A A A A P P          ,
where:

 1 2 LT T ,T ,...,T , T is a set of processing

elements, called transitions;

 1 2, ,..., NP P P P ,  P is a set of processing

elements, called places;

 , 1,iA A i N   ,   A is a set of arcs j iT P

that represent the condition when the number of tokens in
the place is increased and is defined as follows:

1 ,
1, , 1,

0, .

ji j i

i

ji

a T P
A i N j L

a otherwise






   



;

 , 1,  iA A i N ,
  A is a set of arcs

j iT P that represent the condition when the number of

tokens in the place is decreased and is defined as follows:

1 ,
1, , 1,

0, .

ji j i

i

ji

a T P
A i N j L

a otherwise







   



;

 , 1, S S
jA A j L ,  SA is a set of state arcs

i jP T that determine the enable firing condition of the

transition jT related to the marking of the place iP the arc

is connected with. This set is defined as follows:

1 ,
1, , 1,

0, .

S
ij i jS

j S
ij

a P T
A i N j L

a otherwise

   



;

State arc connects an input place to a transition and has
the ability to check whether a place has a token. The
presence of a state arc that connects an input place to a
transition means that the transition is only enabled if the
input place has a token. The firing changes the marking in
the place that is connected to the state arc.

 , 1,T T
jA A j L  ,

TA   is a set of test arcs,

which has the same function as the set of state arcs, but the
firing does not change the marking in the place that is
connected to the test arc.

1 ,
1, , 1,

0, .

T
ij i jT

j T
ij

a P T
A i N j L

a otherwise

   



;

 , 1,I I
jA A j L  ,

IA   is a set of inhibitor

arcs, which provides an enabling function, when the place
stores no tokens. It is defined as follows:

1 ,
1, , 1,

0, .

I
ij i jI

j I
ij

a P T
A i N j L

a otherwise

   



;

Inhibitor arc connects an input place to a transition and
has the ability to test whether a place is empty. The presence
of an inhibitor arc between a place and a transition means
that the transition is enabled if the input place has no token.
The firing does not change the marking in the place that is
connected to the inhibitor arc.

11th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

 151

 , 1, In In In
jP P j L , InP P is a set of processing

elements jP that represent the input signals;

 , 1, Out Out Out
jP P j L , OutP P is a set of

processing elements jP that represent the output signals;

The interaction of the control unit, represented by HPN
and the external system is done through input and output

signals that are given by processing elements InP and
OutP (Figure 1.)

InP OutPHPN
Controlled

system

Figure 1. The interaction of the HPN model with external
system.

IV. PROCESSING ELEMENTS SYNTHESIS

The processing element T prepares the data processing

operation. After analyzing of the global state

 IiPmS ii
k ,1),,( at the step k of data

processing, the condition for step 1k  of data processing

operation is formed.

The behavior of the processing element T may be

described as follows: if in each input place of a transition T

there is a token, then the firing condition of T occurs. In this

case tokens are removed from all input places and are placed

into all output places. In figure 2(a) is shown a transition

with four input and three output places. P1 and P2 are

connected with T1 by state arcs, P3 is connected by inhibitor

arc and P4 is connected by a test arc. The logic

implementation (Figure 2 (b)) represents an NAND gate

with an additional enable input En that allows the firing of

the transition when all its input connections are active. The

logic symbol for the processing element Transition is given

in Figure 2(c).

The processing element P stores the state value and

performs the increment and decrement operation of the

number of tokens. The increment operation occurs when one

of the input transitions of the processing element P fires.

The decrement operation occurs when one of the output

transition of the processing element P fires. The number of

tokens in P at the step 1k  of data processing, denoted

by 1k
im  , is changed according to the following rules:

p1

p2

p3

p4

p5

p6

p7

t1

(a)

11
S
,a

2 1
S
,a

t1

3 1
I
,a

En

4 1
T

,a

11,a

1 2,a

1 7

,a

1 5

,a

1 6

,a

(b)

En

&




T

Tout

S
i , ja 

I
i , ja 

T
i , ja 

(c)
Figure 2. An example of possible connections to a

transition (a), logic implementation of the presented
example (b) and logic symbol of the processing

element Transition (c).

max

1

1
1

1 1

1 1

1 () 1, ;

1 () 1 0;

, 1,

() 0 & () 0;

() 1 & () 1;

i

i

i i

i i

L
k k
i ij i i

j

L
k k
i ij i

j
k
i

L L
k
i ij ij

j j

L L
k
i ij ij

j j

m A m m

m A m

m i N

m A A

m A A





 

 









 

 

 

 


   



     
  


  






 

 

 ;

where: k
im is the number of tokens in iP at the step k of

data processing, iL and iL are the total number of

increment and decrement arcs to the place iP ,

1max max
i(m i , N) M   represents the maximal number

of tokens that can be stored in iP . The best way to

implement a place is to use a counter with a combinational
input logic. In Petri net modeling tasks it is important the
exact number of tokens in the place. When a Hardware Petri
net model works as a digital system it is enough to check the
presence or absence of the tokens in the place. In Figure 3(a)
an example of a place with three input and three output
transitions is presented. The implementation logic and logic
symbol are given in Figure 3(b) and 3(c), respectively,
where: CLK – clock signal,)/(/ RSRESETSET - an

asynchronous set or reset signal to install the initial marking

11th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

 152

M0; Inc- inputs used to increment the number of tokens in a
place; Dec- inputs used to decrement the number of tokens
in a place;

t1

t2

t3

t4

p1

t5

(a)
CT

CLK

S/R

CLK

Set/Reset

11,a

1 5,a
1 4,a
1 3,a
2 1,a

Pout

Inc

Dec

(b)

CLK

S/R

CLK

Set/Reset

Pout
Inc

Dec

P

 i , ja

 j ,ia

(c)
Figure 3. An example of possible connections to a place
(a), logic implementation of the presented example (b)
and logic symbol of the processing element Place (c).

V. DESIGN FLOW

The digital system design flow is presented in Figure 4.
Design steps description:
PN Models Source – Petri net model that is proposed

for analyzing (in graphical form);
VPNP Tool - software tool that allows inserting and

modifying the Petri net model interactivelly;
PN Models Library – the library with Petri net models;
Analysis (Reachability graph & Structural analysis –

The proposed Petri net model is analyzed in order to
determine the set of reachable states and to form the
reachability graph. The structural analysis determines the
main properties of the model such as its reachability,
liveness and reversibility;

MI and MO generation – incidence matrix and initial
marking generation and their storage in certain files;

HDL Compiler – HDL code compilation based on
matrixes MI and MO;

HDL Objects Library – the library with standard HDL
objects that are used to form HDL code of a Petri net;

HDL code – the obtained after compilation HDL code;
Max Plus + II Design Tool – MAX+PLUS II software

is a fully integrated, architecture-independent package for
designing logic with ALTERA programmable logic devices;

FPGA or CPLD Device – FPGA or CPLD configuration
of the Petri net model.

Figure 4. Design flow of the Petri net-based digital
system.

VI. DESIGN EXAMPLE

As a design example a parallel to sequential code
controller is introduced. A controller consists of a RAM for
storage of data to be converted, an 8-bit shift right register
Rg, a data modulation unit DM, a memory address counter
CT Adr, a counter for register Rg bits and a Petri net-based
control unit RPH (Figure 5). The conversion operation
begins when START signal and Rst signal are set. Signal RD
initialize the read operation from RAM with address ADR.
Inc signal is used to increment the address code. EA is the
signal that signalizes the end of the address space. The
extracted data are written in Rg when signal Load is active.
The content of Rg is shifted right, bit by bit, using signal
ShR till signal ERg is generated (after eight shifts). Each
output bit from Rg is modulated in DM. The modulation
time is controlled by signals OEs and OEe. When the
conversion operation is finished, signal EoP is set.

Figure 5. Parallel to sequential code controller.

The corresponding Petri net model that is used as a design
entry and simulation results are shown in Figure 6 and
Figure 7, respectively. The simulation results are presented
for 8-bit data code conversion.

RAM Rg DM

RPH

Start

Din Dout

Adr

RD Load ShR OEs OEe

EoP

88

16

CT
Adr

CT
Rg

1

ERgInc

Rst

EA

PN Models
Sourse

VPNP Tool
PN Models

Library

Analysis
Reachability graph I Structural analysis

MI and M0
Generation

HDL Compiler
HDL Objects

Library

HDL Code

MAX Plus +II Design Tool

FPGA or CPLD
Device

*.mi
*.mo

*.TDF

*.INC

*.TDF
*.INC

.

11th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

 153

VII. CONCLUSION

In this paper an approach for the digital systems design
from Petri nets models has been presented. The use of Petri
nets allows interplay of different formal tasks, such as
synthesis, verification and performance evaluation, to be
carried out within the single modeling framework. The
design flow starts with the behavioral specification of the
digital system using a Petri net model. The main properties
of the model (reachability, liveness, reversibility) are
analyzed using a VPNP software tool. Then the direct
translation of the Petri net model into AHDL code is done
based on Hardware Petri net analyzing. The use of
Hardware Petri nets in CAD tools allows the automation of
the FPGA implementation process and substantially reduces
the design time and efforts. The method can be used for the
synthesis of relatively large circuits when space and speed
constrains are not critical.

REFERENCES
[1] Semiconductor Industry Association, “International Technology

Roadmap for Semiconductors, 2005 Edition.”
[2] A. Bystrov and A. Yakovlev Asynchronous Circuit Synthesis by Direct

Mapping: Interfacing to Environment, Proc. ASYNC'02, Manchester,
April 2002.

[3] J. Carmona, J. Cortadella, and E. Pastor A structural encoding
technique for the synthesis of asynchronous circuits, Fundamenta
Informaticae, pp. 135-154, April 2001.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A.Yakovlev: Logic Synthesis of Asynchronous Controllers and
Interfaces. Springer Verlag (2002).

[5] I. Blunno and L. Lavagno. Automated synthesis of micro-pipelines
from behavioural Verilog HDL, Proc. of IEEE Symp. on Adv. Res. in
Async. Cir. and Syst. (ASYNC 2000), IEEE CS Press, pp. 84-92.

[6] Murata T. Petri nets: Properties, analysis and application, Proceedings
of IEEE, 77(4):541-574, April 1989.

[7] Peterson J.L. Petri Net Theory and the Modeling of Systems, Prentice
Hall, 1981.

[8] A. Valmari, Stubborn attack on state explosion, Formal Methods in
System Design, 1: 297-322, 1991.

[9] E. Pastor, O. Roig, J. Cortadella and R. Badia, Petri net analysis
using boolean manipulation, 15th International Conference on
Application and Theory of Petri Nets, pages 416-435, Zaragoza,
Spain, June 1994.

[10] McMillan K.L., Symbolic Model Checking, Kluwer Academic
Publishers, Boston, 1993.

Figure 6. Petri net model for parallel to sequential data conversion.

Figure 7. Simulation results.

PAGE

11th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 17-19, 2012

Digital Systems Synthesis based on Direct Translation of Petri Net Model

Viorica SUDACEVSCHI, Victor ABABII, Emilian GUTULEAC, Diana PALII

Technical University of Moldova

str.Stefan cel Mare nr. 168, MD-2004 Chisinau

svm@mail.utm.md, ababii@mail.utm.md, egutuleac@mail.utm.md

Abstract — This paper describes a digital system design method based on direct translation of a Petri net model into an FPGA circuit netlist. A proposed CAD tool allows digital system specification, modeling validation and synthesis using ordinary Petri nets. The digital system synthesis is based on Hardware Petri nets that are composed of two kinds of processing elements (Places and Transitions) and data flow path between them. The use of Hardware Petri nets in CAD tools allows the automation of the FPGA implementation process and substantially reduces the design time and cost.

Index Terms — CAD tool, digital system, direct translation, Hardware Petri Net, Petri Net model, system specification.

I. INTRODUCTION

The key point raised in the ITRS (International Technology Roadmap for Semiconductors) is that design cost is the greatest threat to the continued phenomenal progress in microelectronics [1]. The constantly improving CAD tools can help to mitigate the problem by delivering faster simulation, higher capacity formal verification, and better logic synthesis coupled with place-and-route.

The importance of automation of the synthesis process of digital systems steadily grows especially with the constant increase in the complexity of such systems. The use of Petri nets for the specification, analysis and synthesis of digital systems has proved very worthwhile. Petri nets are mathematically well founded and can be used to capture causality relations, concurrency of actions and conflicting conditions from digital systems in a natural and convenient way. It is possible to translate Petri nets to HDL (Hardware Description Language), and vice versa, making it possible to integrate Petri nets tools into existing design environments.

Petri nets implementation methods can be classified into two types: software and hardware. Software implementation represents the emulation of Petri nets using computer software, which usually takes a long time. It is widely used in modeling and performance evaluation problems. Hardware implementation of Petri nets is done especially in FPGA (Field Programmable Gate Arrays) circuits. The advantage of FPGA technology is that the interconnection patterns inherent in the Petri net structural description can be very flexibly mapped to the FPGA structure. The possibility of a run-time reconfiguration allows the use of adoptive algorithms that can reduce the time that is necessary for Petri Net simulation. Hardware implementation methods of Petri nets can be divided into direct translation methods [2,3] and logic synthesis methods [4,5]. Logic synthesis methods often suffer from the state explosion problem because most modern systems are typically modeled as concurrent systems. Direct translation methods guarantee an implementation by construction. The size of the obtained circuits is linear on the size of the specification.

This paper focuses on some of opportunities of Petri nets utilization in digital systems design based on direct translation of the behavioral model into FPGA circuits. A proposed CAD tool allows digital system specification, modeling and implementation using ordinary Petri nets. The synthesizable AHDL code is generated from a Petri net model. Proposed method makes possible the structured and flexible FPGA implementation of a digital system.

II. PETRI NET SPECIFICATION

a) Petri net definition

A Petri net (PN) is a 4-tuple [image: image1.wmf](

)

0

,,,

PTFM

 [6, 7], where:

[image: image2.wmf]{

}

12

,,...,

=

N

Pppp

 is a finite and non-empty set of places;

[image: image3.wmf]{

}

12

,,...,

=

L

Tttt

 is a finite and non-empty set of transitions ([image: image4.wmf]Æ

=

Ç

T

P

);

[image: image5.wmf](

)

(

)

Í´È´

FPTTP

 is a flow relation that defines directed arcs from places to transitions [image: image6.wmf](

)

´ÏÆ

PT

 and transitions to places [image: image7.wmf](

)

´ÏÆ

TP

;

[image: image8.wmf]{

}

0000

12

,,...,

=

N

Mmmm

 is the initial marking.

An ordinary PN is a net where each arc has a weight that is equal to 1. A PN is represented as a graph with two types of nodes: circles are used to denote places and bars or boxes, are used for transitions. Directed arcs between places and transitions and vice versa, denote the flow relation. A marking of a PN is depicted with tokens. A transition is said to be enabled under a given marking, if all its input places contain at least one token. An enable transition can fire, producing a new marking. The firing of a transition removes one token from each input place and adds one token into each output place of the transition.

b) Petri net properties

The behavioral properties of PN are very important for modeling, analyzing, verification and validation of digital systems.

A PN is said to be finite if sets P and T are finite.

A PN is said to be k-bounded if in all reachable marking no place has more than k tokens.

A 1-bounded PN is called a safe PN.

A marking m is said to be reachable from the initial marking m0 if exists a sequence of firings [image: image9.wmf]s

 that transforms m0 to m. The set of markings of a net that can be reached from its initial marking by means of all possible firings of transitions is called the reachability set of the PN. It can be represented as a graph, called the reachability graph of the net, with the nodes labeled with the markings and the arcs labeled with transitions.

A PN is said to be reversible if for any marking m, the initial marking m0 is reachable from m.

A transition T of a PN is said to be live if for any reachable marking m there exists a marking [image: image10.wmf]m

¢

 reachable from m at which this transition is enabled. A PN is said to be live if every transition is live. This is called a strong form of PN liveness, in which every operation can be activated at some state when the system starts at any of its allowable states. A weaker form of liveness requires a transition to be enabled at least once at some reachable marking. A reachable marking m at which no transition is enabled is called a deadlock. A PN is said to be deadlock-free if its reachability set includes no deadlocks. Presence of deadlocks is regarded as an error in a system which operates in cycles.

c) Petri net analysis

There are several methods for analyzing the PN dynamic behavior. The most common one is to build a reachability set which represent all possible states of the system. This method is expensive because the reachable markings may grow exponentially with the number of transitions in the PN.

A few methods have been proposed to overcome the state space explosion. One of them is the stubborn set method [8]. This method partially represents the reachability set. It uses the fact that interleaving (possible orderings of concurrent transitions) lead to the same marking. Although efficient in finding deadlocks, it does not produce a complete representation of the reachable state space. Another method is so called PN symbolic traversal [9]. It uses implicit representation of the reachability set in the form of Binary Decision Diagrams (BDDs) which are canonical representations of Boolean functions in graphical form. This method is efficient in analysis of “state-based” properties such as freedom from deadlock. The third method is called PN unfolding [11]. It is based on representation of full reachability graph using partial orders preserving relations between transition occurrences. A transition occurrence is a unique event associated with a single act of firing of the transition. Since all reachable markings are represented in the PN unfolding, the concurrency relation for two transitions can easily be obtained.

III. HARDWARE PETRI NETS MODELS

The computer-based synthesis of the digital system from Petri net level to logic design level requests the adaptation of the Petri net model to its hardware implemented model. The digital system model is considered a set of processing elements with data flow path between them. The corresponding Petri net model contains two kinds of processing elements [image: image11.wmf]i

P

 and [image: image12.wmf]j

T

. The arcs between them represent the data flow paths. The arc from processing element[image: image13.wmf]i

P

 to processing element [image: image14.wmf]j

T

 is denoted as [image: image15.wmf]a

ij

PT

 and the arc from processing element [image: image16.wmf]j

T

 to processing element [image: image17.wmf]i

P

 is denoted as[image: image18.wmf]a

ji

TP

. In the hardware implemented PN model the data flow depends on the topology of the net.

A Hardware Petri Net (HPN) is defined as reunion between sets of processing elements and data flows.

[image: image19.wmf]STIInOut

RPHTPAAAAAPP

+-

=ÈÈÈÈÈÈÈÈ

, where:

[image: image20.wmf]{

}

12

=

L

TT,T,...,T

, [image: image21.wmf]¹Æ

T

 is a set of processing elements, called transitions;

[image: image22.wmf]{

}

12

,,...,

=

N

PPPP

, [image: image23.wmf]¹Æ

P

 is a set of processing elements, called places;

[image: image24.wmf]{

}

,1,

i

AAiN

++

==

, [image: image25.wmf]+

¹Æ

A

 is a set of arcs [image: image26.wmf]®

ji

TP

 that represent the condition when the number of tokens in the place is increased and is defined as follows:

[image: image27.wmf]1,

1,,1,

0,.

jiji

i

ji

aTP

AiNjL

aotherwise

+

+

+

ì

=

ï

===

í

=

ï

î

a

;

[image: image28.wmf]{

}

,1,

--

==

i

AAiN

, [image: image29.wmf]-

¹Æ

A

 is a set of arcs [image: image30.wmf]a

ji

TP

 that represent the condition when the number of tokens in the place is decreased and is defined as follows:

[image: image31.wmf]1,

1,,1,

0,.

jiji

i

ji

aTP

AiNjL

aotherwise

-

-

-

ì

=

ï

===

í

=

ï

î

a

;

[image: image32.wmf]{

}

,1,

==

SS

j

AAjL

, [image: image33.wmf]¹Æ

S

A

 is a set of state arcs [image: image34.wmf]a

ij

PT

 that determine the enable firing condition of the transition [image: image35.wmf]j

T

 related to the marking of the place [image: image36.wmf]i

P

 the arc is connected with. This set is defined as follows:

[image: image37.wmf]1,

1,,1,

0,.

S

ijij

S

j

S

ij

aPT

AiNjL

aotherwise

ì

=

ï

===

í

=

ï

î

a

;

State arc connects an input place to a transition and has the ability to check whether a place has a token. The presence of a state arc that connects an input place to a transition means that the transition is only enabled if the input place has a token. The firing changes the marking in the place that is connected to the state arc.

[image: image38.wmf]{

}

,1,

TT

j

AAjL

==

, [image: image39.wmf]T

A

¹Æ

 is a set of test arcs, which has the same function as the set of state arcs, but the firing does not change the marking in the place that is connected to the test arc.

[image: image40.wmf]1,

1,,1,

0,.

T

ijij

T

j

T

ij

aPT

AiNjL

aotherwise

ì

=

ï

===

í

=

ï

î

a

;

[image: image41.wmf]{

}

,1,

II

j

AAjL

==

, [image: image42.wmf]I

A

¹Æ

is a set of inhibitor arcs, which provides an enabling function, when the place stores no tokens. It is defined as follows:

[image: image43.wmf]1,

1,,1,

0,.

I

ijij

I

j

I

ij

aPT

AiNjL

aotherwise

ì

=

ï

===

í

=

ï

î

a

;

Inhibitor arc connects an input place to a transition and has the ability to test whether a place is empty. The presence of an inhibitor arc between a place and a transition means that the transition is enabled if the input place has no token. The firing does not change the marking in the place that is connected to the inhibitor arc.

[image: image44.wmf]{

}

,1,

==

InInIn

j

PPjL

,[image: image45.wmf]Î

In

PP

 is a set of processing elements [image: image46.wmf]j

P

 that represent the input signals;

[image: image47.wmf]{

}

,1,

==

OutOutOut

j

PPjL

,

[image: image48.wmf]Î

Out

PP

 is a set of processing elements [image: image49.wmf]j

P

 that represent the output signals;

The interaction of the control unit, represented by HPN and the external system is done through input and output signals that are given by processing elements

[image: image50.wmf]In

P

 and

[image: image51.wmf]Out

P

 (Figure 1.)

[image: image52.wmf]In

P

Out

P

HPN

Controlled

system

Figure 1. The interaction of the HPN model with external system.

IV. PROCESSING ELEMENTS SYNTHESIS

The processing element T prepares the data processing operation. After analyzing of the global state

[image: image53.wmf]{

}

I

i

P

m

S

i

i

k

,

1

),

,

(

=

"

=

 at the step

[image: image54.wmf]k

 of data processing, the condition for step

[image: image55.wmf]1

k

+

 of data processing operation is formed.

The behavior of the processing element T may be described as follows: if in each input place of a transition T there is a token, then the firing condition of T occurs. In this case tokens are removed from all input places and are placed into all output places. In figure 2(a) is shown a transition with four input and three output places. P1 and P2 are connected with T1 by state arcs, P3 is connected by inhibitor arc and P4 is connected by a test arc. The logic implementation (Figure 2 (b)) represents an NAND gate with an additional enable input En that allows the firing of the transition when all its input connections are active. The logic symbol for the processing element Transition is given in Figure 2(c).

The processing element [image: image56.wmf]P

 stores the state value and performs the increment and decrement operation of the number of tokens. The increment operation occurs when one of the input transitions of the processing element [image: image57.wmf]P

 fires. The decrement operation occurs when one of the output transition of the processing element [image: image58.wmf]P

 fires. The number of tokens in [image: image59.wmf]P

 at the step [image: image60.wmf]1

k

+

of data processing, denoted by[image: image61.wmf]1

k

i

m

+

, is changed according to the following rules:

		[image: image62.emf]p1

p2

p3

p4

p5

p6

p7

t1

		(a)

		[image: image63.wmf]11

S

,

a

21

S

,

a

t1

31

I

,

a

En

41

T

,

a

11

,

a

-

12

,

a

-

17

+

,

a

15

+

,

a

16

+

,

a

		(b)

		[image: image64.wmf]En

&

{

{

T

Tout

S

i,j

a

M

I

i,j

a

M

{

T

i,j

a

M

		(c)

		Figure 2. An example of possible connections to a transition (a), logic implementation of the presented example (b) and logic symbol of the processing element Transition (c).

[image: image65.wmf]max

1

1

1

11

11

1()1,;

1()10;

,1,

()0&()0;

()1&()1;

i

i

ii

ii

L

kk

iijii

j

L

kk

iiji

j

k

i

LL

k

iijij

jj

LL

k

iijij

jj

mAmm

mAm

miN

mAA

mAA

+

-

+-

+-

+

=

-

=

+

+-

==

+-

==

ì

+="<

ï

ï

ï

ï

-=">

ï

ï

==

í

ï

==

ï

ï

ï

ï

==

ï

î

S

S

SS

SS

 ;

where: [image: image66.wmf]k

i

m

is the number of tokens in [image: image67.wmf]i

P

 at the step [image: image68.wmf]k

of data processing, [image: image69.wmf]i

L

+

 and [image: image70.wmf]i

L

-

 are the total number of increment and decrement arcs to the place [image: image71.wmf]i

P

, [image: image72.wmf]1

maxmax

i

(mi,N)M

"=Î

 represents the maximal number of tokens that can be stored in [image: image73.wmf]i

P

. The best way to implement a place is to use a counter with a combinational input logic. In Petri net modeling tasks it is important the exact number of tokens in the place. When a Hardware Petri net model works as a digital system it is enough to check the presence or absence of the tokens in the place. In Figure 3(a) an example of a place with three input and three output transitions is presented. The implementation logic and logic symbol are given in Figure 3(b) and 3(c), respectively, where: CLK – clock signal, [image: image74.wmf])

/

(

/

R

S

RESET

SET

 - an asynchronous set or reset signal to install the initial marking M0; Inc- inputs used to increment the number of tokens in a place; Dec- inputs used to decrement the number of tokens in a place;

		[image: image75.emf]t1

t2

t3t4

p1

t5

		(a)

		[image: image76.wmf]CT

CLK

S/R

CLK

Set/Reset

11

,

a

+

15

,

a

-

14

,

a

-

13

,

a

-

21

,

a

+

Pout

Inc

Dec

		(b)

		[image: image77.wmf]CLK

S/R

CLK

Set/Reset

Pout

Inc

Dec

P

{

M

i,j

a

-

{

M

j,i

a

+

		(c)

		Figure 3. An example of possible connections to a place (a), logic implementation of the presented example (b) and logic symbol of the processing element Place (c).

V. DESIGN FLOW

The digital system design flow is presented in Figure 4.

Design steps description:

PN Models Source – Petri net model that is proposed for analyzing (in graphical form);

VPNP Tool - software tool that allows inserting and modifying the Petri net model interactivelly;

PN Models Library – the library with Petri net models;

Analysis (Reachability graph & Structural analysis – The proposed Petri net model is analyzed in order to determine the set of reachable states and to form the reachability graph. The structural analysis determines the main properties of the model such as its reachability, liveness and reversibility;

MI and MO generation – incidence matrix and initial marking generation and their storage in certain files;

HDL Compiler – HDL code compilation based on matrixes MI and MO;

HDL Objects Library – the library with standard HDL objects that are used to form HDL code of a Petri net;

HDL code – the obtained after compilation HDL code;

Max Plus + II Design Tool – MAX+PLUS II software is a fully integrated, architecture-independent package for designing logic with ALTERA programmable logic devices;

FPGA or CPLD Device – FPGA or CPLD configuration of the Petri net model.

		[image: image80.wmf]PN Models

Sourse

VPNP Tool

PN Models

Library

Analysis

Reachability graph I Structural analysis

MI and M0

Generation

HDL Compiler

HDL Objects

Library

HDL Code

MAX Plus +II Design Tool

FPGA or CPLD

Device

*.mi

*.mo

*.TDF

*.INC

*.TDF

*.INC

.

		Figure 4. Design flow of the Petri net-based digital system.

VI. DESIGN EXAMPLE

As a design example a parallel to sequential code controller is introduced. A controller consists of a RAM for storage of data to be converted, an 8-bit shift right register Rg, a data modulation unit DM, a memory address counter CT Adr, a counter for register Rg bits and a Petri net-based control unit RPH (Figure 5). The conversion operation begins when START signal and Rst signal are set. Signal RD initialize the read operation from RAM with address ADR. Inc signal is used to increment the address code. EA is the signal that signalizes the end of the address space. The extracted data are written in Rg when signal Load is active. The content of Rg is shifted right, bit by bit, using signal ShR till signal ERg is generated (after eight shifts). Each output bit from Rg is modulated in DM. The modulation time is controlled by signals OEs and OEe. When the conversion operation is finished, signal EoP is set.

		[image: image81.wmf]RAM

Rg

DM

RPH

Start

Din

Dout

Adr

RD

Load

ShR

OEs

OEe

EoP

8

8

16

CT

Adr

CT

Rg

1

ERg

Inc

Rst

EA

		Figure 5. Parallel to sequential code controller.

The corresponding Petri net model that is used as a design entry and simulation results are shown in Figure 6 and Figure 7, respectively. The simulation results are presented for 8-bit data code conversion.

VII. CONCLUSION

In this paper an approach for the digital systems design from Petri nets models has been presented. The use of Petri nets allows interplay of different formal tasks, such as synthesis, verification and performance evaluation, to be carried out within the single modeling framework. The design flow starts with the behavioral specification of the digital system using a Petri net model. The main properties of the model (reachability, liveness, reversibility) are analyzed using a VPNP software tool. Then the direct translation of the Petri net model into AHDL code is done based on Hardware Petri net analyzing. The use of Hardware Petri nets in CAD tools allows the automation of the FPGA implementation process and substantially reduces the design time and efforts. The method can be used for the synthesis of relatively large circuits when space and speed constrains are not critical.

REFERENCES

[1] Semiconductor Industry Association, “International Technology Roadmap for Semiconductors, 2005 Edition.”

[2] A. Bystrov and A. Yakovlev Asynchronous Circuit Synthesis by Direct Mapping: Interfacing to Environment, Proc. ASYNC'02, Manchester, April 2002.

[3] J. Carmona, J. Cortadella, and E. Pastor A structural encoding technique for the synthesis of asynchronous circuits, Fundamenta Informaticae, pp. 135-154, April 2001.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.Yakovlev: Logic Synthesis of Asynchronous Controllers and Interfaces. Springer Verlag (2002).

[5] I. Blunno and L. Lavagno. Automated synthesis of micro-pipelines from behavioural Verilog HDL, Proc. of IEEE Symp. on Adv. Res. in Async. Cir. and Syst. (ASYNC 2000), IEEE CS Press, pp. 84-92.

[6] Murata T. Petri nets: Properties, analysis and application, Proceedings of IEEE, 77(4):541-574, April 1989.

[7] Peterson J.L. Petri Net Theory and the Modeling of Systems, Prentice Hall, 1981.

[8] A. Valmari, Stubborn attack on state explosion, Formal Methods in System Design, 1: 297-322, 1991.

[9] E. Pastor, O. Roig, J. Cortadella and R. Badia, Petri net analysis using boolean manipulation, 15th International Conference on Application and Theory of Petri Nets, pages 416-435, Zaragoza, Spain, June 1994.

[10] McMillan K.L., Symbolic Model Checking, Kluwer Academic Publishers, Boston, 1993.

		[image: image78.png]

		Figure 6. Petri net model for parallel to sequential data conversion.

		[image: image79.png]D-EIJ

%z»

xtplusl Fle Edt View Node Assin Utiiies Options Window Help

;JJJABE@&J@;E@J”I

Ref [0.0ns

Narme:

lao— reset
lg9— clock

b SR _markersQ
- RD_markers0

- OFs_markers)

[E2E]

L OFe_markers)
AL Load_markers0

i Inc_markers)

159 Ry_markers[3..0]

|

> Adi_markers[3.0]

		Figure 7. Simulation results.

PAGE

153

_1235634920.unknown

_1396793576.unknown

_1396793603.unknown

_1182070979.unknown

_1230378875.unknown

_1196071082.unknown

_1140702850.unknown

