Some particular cases for inverse operations in the class of preradicals in modules

JARDAN Ion

In [1], [2], [3] four new operations are introduced and studied in the class of preradicals $\mathbb{P} \mathbb{R}$ in modules, namely, the inverse operations of the product and of the coproduct with respect to meet and to join. They are defined as follows:
(1) the left quotient with respect to join $r \% s=\vee\left\{r_{\alpha} \in \mathbb{P} \mathbb{R} \mid r_{\alpha} \cdot s \leq r\right\}$, which exists $\forall r, s \in \mathbb{P} \mathbb{R}$;
(2) the left coquotient with respect to meet $r \aleph_{\neq} s=\wedge\left\{r_{\alpha} \in \mathbb{P} \mathbb{R} \mid r_{\alpha} \# s \geq r\right\}$, which exists $\forall r, s \in \mathbb{P} \mathbb{R}$;
(3) the left quotient with respect to meet $r y \cdot s=\wedge\left\{r_{\alpha} \in \mathbb{P} \mathbb{R} \mid r_{\alpha} \cdot s \geq r\right\}$, which exists $\forall r, s \in \mathbb{P} \mathbb{R}, r \leq s ;$
(4) the left coquotient with respect to join $r^{\vee} / s=\vee\left\{r_{\alpha} \in \mathbb{P} \mathbb{R} \mid r_{\alpha} \# s \leq r\right\}$, which exists $\forall r, s \in \mathbb{P} \mathbb{R}, r \geq s$.

The similar questions are discussed in $[4 ; 5 ; 6]$.
In this communication some important particular cases of these operations are considered. Namely, for each of formulated operation we indicate a particular case, which coincides with a well known operator in $\mathbb{P R}$. Moreover, some properties of these operators are shown $[1 ; 2 ; 3 ; 7 ; 8]$.

For any preradical $r \in \mathbb{P} \mathbb{R}$, these particular cases are:
(1) $0 \% \cdot r=\vee\left\{r_{\alpha} \in \mathbb{P} \mathbb{R} \mid r_{\alpha} \cdot r=0\right\}=a(r)$ is the annihilator of r;
(2) $1 \aleph_{\neq} r=\wedge\left\{r_{\alpha} \in \mathbb{P} \mathbb{R} \mid r_{\alpha} \# r=1\right\}=t(r)$ is the totalizer of r;
(3) r y. $r=\wedge\left\{r_{\alpha} \in \mathbb{P} \mathbb{R} \mid r_{\alpha} \cdot r=r\right\}=e(r)$ is the equalizer of r;
(4) $r \vee / \neq r=\vee\left\{r_{\alpha} \in \mathbb{P} \mathbb{R} \mid r_{\alpha} \# r=r\right\}=c(r)$ is the co-equalizer of r.

The annihilator of preradical r possesses the following properties $\forall r \in \mathbb{P} \mathbb{R}$:
(1) $a(r) \cdot r=0$;
(2) $a(r)$ is a radical;
(3) $a(s) \leq r \% s, \forall s \in \mathbb{P}$;
(4) $r^{\perp} \leq a(r) \leq r^{*}$, where r^{\perp} is pseudocomplement and r^{*} is supplement of preradical r.

The totalizer of preradical r possesses the following properties $\forall r \in \mathbb{P} \mathbb{R}$:
(1) $t(r) \# r=1$;
(3) $t(r)$ is a Jansian pretorsion;
(3) $t(s) \geq r \not \mathbb{K}_{H} s, \forall s \in \mathbb{P} \mathbb{R}$;
(4) $r^{\perp} \leq t(r) \leq r^{*}$.

The equalizer of preradical r possesses the following properties $\forall r \in \mathbb{P} \mathbb{R}$:
(1) $e(r) \cdot r=r$;
(2) $e(r)$ is an idempotent preradical;
(3) r is an idempotent preradical $\Leftrightarrow e(r)=r$;
(4) $r \leq r y . s \leq e(r), \forall s \in \mathbb{P}, s \geq r$;
(5) $e(r) \cdot(r y \cdot s)=r y \cdot s, \forall s \in \mathbb{P} \mathbb{R}, s \geq r$;
(6) $(r y \cdot s) \cdot e(s)=r y \cdot s, \forall s \in \mathbb{P} \mathbb{R}, s \geq r$;
(7) $(r y . s)$ Y. $e(s)=r y . s, \forall s \in \mathbb{P} \mathbb{R}, s \geq r$.

The co-equalizer of preradical r possesses the following properties $\forall r \in \mathbb{P}$:
(1) $c(r) \# r=r$;
(2) $c(r)$ is a radical;
(3) r is a radical $\Leftrightarrow c(r)=r$;
(4) $c(r) \leq r^{\vee} / / s \leq r, \forall s \in \mathbb{R} \mathbb{R}, s \leq r$;
(5) $c(r) \#(r \vee / / s)=r \vee / / s, \forall s \in \mathbb{P} \mathbb{R}, s \leq r$;
(6) $(r / / 4 s) \# c(s)=r \vee / \pm s, \forall s \in \mathbb{P} \mathbb{R}, s \leq r$;
(7) $\left(r^{v / / s} s\right)_{/ /} c(s)=r{ }^{v / / s} s, \forall s \in \mathbb{P}, s \leq r$.

References

[1] JARDAN, I. On the inverse operations in the class of preradicals of a module category, I. In: Bul. Acad. Ştiinţe Repub. Moldova, Mat. 2017, vol. 83, no. 1, pp. 57-66.
[2] JARDAN, I. On the inverse operations in the class of preradicals of a module category, II. In: Bul. Acad. Ştiinţe Repub. Moldova, Mat. 2017, vol. 84, no. 2, pp. 77-87..
[3] JARDAN, I. On partial inverse operations in the class of preradicals of modules. In: An. Şt. Univ. Ovidius Constanţa. 2019, vol. 27, no. 2, pp. 15-36.
[4] GOLAN, J.S. Linear topologies on a ring: an overview. New York: Longman Scientific and Technical, 1987. 104 p.
[5] KASHU, A.I. On inverse operations in the lattices of submodules. In: Algebra and Discrete Math. 2012, vol. 13, no. 2, pp. 273-288.
[6] KASHU, A.I. On partial inverse operations in the lattices of submodules. In: Bul. Acad. Şt. Repub. Mold., Mat. 2012, vol. 69, no. 2, pp. 59-73.
[7] RAGGI, F., RIOS, J, RINCON, H., FERNANDEZ-ALONSO, R., SIGNORET, C. The lattice structure of preradicals II: partitions. In: Journal of Algebra and Its Applications. 2002, vol. 1, no. 2, pp. 201-214.
[8] RAGGI, F., RIOS, J, RINCON, H., FERNANDEZ-ALONSO, R., SIGNORET, C. The lattice structure of preradicals III: operators. In: Journal of Pure and Applied Algebra. 2004, vol. 190, pp. 251-265.
(JARDAN Ion) Technical University of Moldova, Vladimir Andrunachievici Institute of Mathematics and Computer Science, Chişinău, Republic of Moldova
E-mail address: ion.jardan@mate.utm.md; jordanion79@gmail.com

