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INTRODUCTION 
 

Random (stochastic) test generation is an 

actual up-to-date direction and efficient technique 

for simulation-based verification of large complex 
hardware (digital) designs such as microprocessors 

[1,…, 9]. From one hand, there exist sophisticated 

verification tools for generation, including 
controlled, random tests, which are used for 

functional verification of processors [10, 11, 12]. 

From the other hand, it is proposed to add specific 
language constructs to HDL to keep the 

randomization features [13, 14]. 

An important issue is the evaluation of the 

effectiveness of random test verification methods. A 
variety of coverage metrics have been proposed: the 

branch coverage and path coverage [15, 16] models 

used in software testing [17], finite state machine 
based metrics [18,…, 21], an observability metric 

[22, 23], and design-specific metrics such as 

architectural events [1, 24]. 

The predecessors paid more attention to 
development of the tools that help the user to 

control the process of test programs (TP) 

generation. Till now the generalized model of 
estimation of the test programs quality is not yet 

developed. Our objective is to make an advance in 

developing the estimation of quality and the 
controlled synthesis of the test program generator 

(TPG). 

In this paper it is proposed the approach, 

called syntactic (keeping tradition in [25]), where 
the structure of stochastic grammar defines the 

controlled languages constructs for weighted 

random test generation. The structure of grammar is 
“restored” from the microprocessor (MP) 

specification just from the instructions set 

specification and the interface protocol description. 
Here it is used the existing HDL languages 

(namely VHDL) features for implementation of the 

proposed methodology. In the next section of the 

paper the mathematical model for quality evaluation 
of the controlled random test generation is 

proposed. Then, in section 2, briefly is presented the 

unit under verification, and in sections 3, 4, and 5 is 
presented the methodology of synthesis of the 

(stochastic) grammar generator for simulation-based 

verification of a simple microprocessor. In Section 

6 the results of microprocessor test benches 

simulation are presented and analyzed. The paper 

ends with some concluding remarks and ideas about 
future development of controlled random testing for 

verification. 

1. THE LENGTH OF RANDOM TEST 

VERIFICATION 

To compute the test length we take into 

account the tools (simulation coverage Report) of 
evaluation of the simulation coverage measure in a 

widely used CAD-system such as Quartus II from 

Altera. This “estimation” is based on computation 

of percentage of exercise (flip-flopping) of the 
design’s nodes, more exactly, is checked as the ratio 

of output ports actually toggling between 1 and 0 

during simulation, compared to the total number of 
output ports presented in the netlist. 

Let us pe is the probability of exercising of 

node e on feeding of a test pattern to inputs of unit 

under verification (UUV). So, the probability Pe(l) 
of exercising of node e on feeding l test pattern is 

equal to  

Pe (l)= 1- (1- pe)
l, (1) 

where eE, E is the netlist of design. 
For the small values of pe results the 

inequality: 

1- (1- pe)
l  1- exp( -l pe) (2) 

Accepting  as the level of confidence (vs 

risc) of the random test verification of length l, i.e. 

Pe(l)= , from (1) and (2) is follows: 




1

1
ln

1

ep
l . (3) 

For computation l the level of confidence  
and the probability pe must be known before. For 

example, if the values of  are equal to 0.632; 

0.865; 0,95; 0,982 etc., then values of random test 

length are: l = 1/pe; 2/pe; 3/pe; 4/pe etc.  

It is easy to prove that the formula (3) is valid 
also if the path coverage metric is used. The value 

(3) is an apriori estimation of the verification test 

length l and is well correlated with experimental 
data presented in referenced bibliography.  
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Thus, we obtain a theoretical model of 
estimation random test verification quality. But, any 

theoretical model must be approved practically. In 

the further sections of the paper we develop the 

syntactic model of random generator for 
microprocessor verification. Some verification 

experiments will be performed and the resulted test 

length will be compared with expected one. 

2. BRIEF PRESENTATION OF UNIT 

UNDER VERIFICATION 

The considered unit under verification is a 4-
bit microprocessor slice AM2901. Its full VHDL 

description is available from [26]. Figure 1 depicts 

the AM2901 microprocessor as a gray-box. Slice-

MP contains the following functional units: two-
address RAM array RAM_Regs, the one-word shift 

register Q_Reg, the source operand multiplexer 

Src_op, the arithmetic logic unit ALU that performs 
three arithmetic operations and five logic functions 

of two 4-bit operands, the output multiplexer 

Out_Mux. The a and b 4-bit addresses are used to 

address the RAM_Regs 16-word register file, where 
size of the word is equal 4 bit. 

Signal d is a direct input to the r source 

operand multiplexer. Signal q represents the 
contents of Q_Reg and feeds the s to source 

operand multiplexer. The ALU has carry-in cin, 

carry-out cout and other additional signals. 
The function of MP-slice is defined by a 9-bit 

microinstruction i. Three bits i[2:0] define the 

source operands, i[5:3] – ALU function, and i[8:6] – 

ALU destination. 
Thus, the stimuli are the signals and 

instructions with predefined structure (syntax). This 

property is common for all microprocessors. So, 
further analysis can be extended to general case. 

3. PROPOSED TECHNIQUE  

In the study case there is no limitations on the 

syntax of generated test sequences. But the 
instructions must be arranged under a certain rule. 

The objective of test generation process is the 

synthesis of test (micro)programs with a specific 

syntax. From this point of view some instructions 
load the data in the memory’s elements, others - 

process or/and unload the data from them.  

Thus, the rule of composition of the test 
program structure can be formulated by the next 

paradigm:  

“data load  inherently data process  

unload (and analysis) of results”. (4) 

The rule (4) expresses the semantic aspect of 
the objective of random test programs generation. In 

the other words, rule (4) reflects the stochastic 

generation process of test programs with data 
dependency and can be accepted as a link between 

functional (behavioral) model of the MP [31] and 

rules of construction of TPG, proposed in [29]. 

More sophisticated type of dependences can 
be introduced: primary, data, instructional, and 

functional. Primary (structural) dependence defines 

the syntax of instructions. Data dependence appears 
when is needed to set up the transition of data 

between the instructions. There are 3 types of data 

dependences: read after write, write after read, and 
write after write. Data dependence frequently 

occurs in pipeline design. Instructional dependence 

defines the link between MP specific instructions, 

e.g. push-pop, loop-exit, call-return, etc. Functional 
(behavioral) dependence is established by an 

experienced designer on basis of his knowledge of 

behavior of the design entities (modules). 
To provide the condition (4) let us represent 

the component parts of instruction, i.e. ALU 

functions and operands, by a graphical images 
(pictograms). The pictogram of component consists 

of terminal and internal nodes that represent the 

elements of memory (registers) and ALU functions 

(symbol ). There are 8 ALU source+function 

pictograms: s0..s7, and 8 destination pictograms: 
d0..d7 (see Tables 6-1, 6-2 and 6-3 in [26]). The 

arcs mean transition of data. The zigzag-arc means 

selection of the RAM word.  

The pictograms are connected (“glued”) by 
suitable terminal nodes (like in puzzle-game). The 

gluing of pictograms is performed in the following 

way: source with destination creates an instruction 
structure (word in the sentence), and resulted 

structure is connected with another instruction 

structure, thus “building” a sentence, i.e. test 
program. This process can be executed recursively. 

All connections are performed according rule (4). 
Figure 1.  AM2901 block diagram. 
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Some typical pictograms and a fragment of glued 
pictogram are shown in figure 2. The node RNG in 

figure 2, c) means a random number generator. 

Introduced pictograms can be used prototype 
for wizard tools of automation of synthesis of the 

test program stochastic generator. This illustrative 

representation of the structure (syntax) of generated 

sequences is an intermediary step for jump to 
formal synthesis of generation grammar of the 

random test programs. 

4. SYNTHESIS OF THE TEST 

PROGRAM GENERATOR 

The technique of synthesis of the syntax test 
generator, inclusively generation of random test 

cases, is well known for compiler testing [27,28]. 

The test cases generator is controlled by 
programming language syntactic diagram (SD). 

And the SD is needed for a MP to generate the 

syntactic correct test programs. But the MP 
specification doesn’t have such SD. Many efforts 

must be made to construct (synthesis) a 

syntactically (and, may be, semantically) correct 

model of the random TPG [29]. But in our study 
case the MP is a simple one. Accepting the rule (4) 

and assuming the degree=2 for data dependence it 

was synthesized the random syntactic tree, shown in 
figure 3. 

In the figure 3 callout !(..) mean equiprobable 

generation of item and the non marked fan-out 
branches  have uniform probabilities. 

A stochastic grammar can be associated with 

this tree. A grammar is defined by a 4-tuple G=(VN, 

VT, R, S) where VN and VT are nonempty sets of 
terminal and nonterminal symbols, respectively. 

The symbol S, SVN  is called the starting symbol 
and V=. VN VT is the vocabulary of G. The finite 

nonempty set R of (VVNV)V is called production 
rules. In a stochastic grammar Gs with each 

production iij is associated a probability pij, 

where  and  are strings of symbols over the 

vocabulary, 0 pij  1, 1 i  k, 1 j  mi, 1
1




im

j
ijp . 

For the study case we have the next stochastic 

grammar GSt: 

VN = {S, A, B, C, D, E, F, H, Z} 

VT = {s0,…,s7, d0,…,d7, 0,…,7} 

S = S 

R = { 7'0'3 sdS SAp
 , BOCS SBp

  , 

0
7/1

sB  , 1
7/1

sB  , …, 6
7/1

sB  , 

'0'
8/1
O , '1'

8/1
O ,…, '7'

8/1
O , 

DCdC CDp
0  , FBC CFp

  , HSC CHp
  ,  

SdC CZp
1  , OCsD 2

2/1
 , OCsD 6

2/1
 , 

2
4/1

dF  , 3
4/1

dF  , 5
4/1

dF  , 

7
4/1

dF  , 4
2/1

dH  , 6
2/1

dH  }. 

The synthesis of TPG is reduced to definition 

of generator grammar production rules. The syntax 

of grammar (structure of TPG) can be synthesized 
(builded), for example, by the top-down recursive 

descent parsing method, analyzed in [29]. The 

syntax of grammar should guarantee that the 

derived TP would always be valid.  

The repartition of probabilities P (R) on rules 

of set R is called syntactic style [30]. In accordance 

with Chomsky classification the grammar GSt is of 

type 2, i.e. is noncontextual (context-free). The 
grammar GSt defines the structure of the random 

Figure 2. Pictograms of AM2901 -instructions: 

(a) source operand and ALU function, 

(b) ALU destination, and (c) example of 

“gluing” pictogram. 
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(weighted) test program generator for verification of 
the AM2901 slice-MP. In the HDL language, in 

particular VHDL, is needed to have the 

corresponding mechanism to produce a sentence in 

grammar GSt. Also note that some transition 
probabilities have the predefined values and another 

probabilities, such as pS() and  pC() , are undefined. 

The undefined probabilities will be defined later. 

5. WEIGHTED CASE STATEMENT 

The weighted case statement differ form the 
classical one by that in accordance with predefined 

repartition of probabilities the selector variable get a 

value from the sample of numbers. It is obvious that 

the existing linguistic tools can emulate such 
weighted case. To do this, initially is needed to 

generate the value of selector, then, after this, to 

jump on the corresponding variant. 

5.1. Model 

The model of weighted number generator is 
the probabilistic binary tree (P-tree). Figure 4 

depicts the binary tree of code of a 2-bit number and 

corresponding to it P-tree. The probability of an 

outcome is the product of the probabilities on the 
path from the root to the vertex. Starting from the 

known repartition of the probabilities on vertex 

(leafs) of the P-tree it is easy to restore the 
conditional probabilities on each tree’s branch. 

From the practical point of view it is more 

suitable to represent the P-tree by a weighted binary 

tree (W-tree). In this case the weighted choice of a 
bit value consists in performing of one VHDL-

statement: 

if Weight> LFSR then return(‘1’); else return(‘0’); (5) 

where LFSR is a state of the linear feedback shift 

register of size n, 0 Weight  2n-1 

5.2. Implementation 

The weighted generation of a number is 
based on recursive execution of statement (5). For 

example, if it is needed to equiprobable select of a 

number from 0 to 5, then the corresponding P-tree 

and W-tree will looks as it is shown in figure 5. 
Note that the arcs of W-tree in figure 5 (b) are 

labeled by the relative weights. 

On implementing the W-tree, each of its level 
is coded by a string of weights. Because each fan-

out node contains the complementary probabilities 

then the i-th string contains 2i weights, namely 

weight of the right branch, where i= 0,…,r-1, 

r=log2N, N is the maximum value of the number. 
The resulted record of strings is stored in the 

(RAM) array from where the weights are 

conditionally read. Thus, was described the 

(recursive) weighted number generator (WNG) unit, 
which diagram is shown in figure 6. 

The behavior of WNG-unit is the following. 

Let be the W-tree shown in figure 5, b) and size of 
LFSR equal to n=10. So, the corresponding record 

of weights is: 

0: 341 
levels       1: 512, 0 

2: 512, 512, 512, 0 

which is written in the ROM as PRec=0, where 

PRec points to the base address of a record. 

Functioning of the WNG-unit starts with 
flicking the feeding value of the PRec, that is the 

high nibble(pointer to) of the record address. Also, 

the flick signal reset the shift registers RgShr and 
FIFO. The register RgShr indexes the string in the 

record: 0, 1, 3, 7 etc. The register FIFO indexes the 

b) a) 

Figure 4. Binary (a) and probabilistic (b) 

trees of the 2-bit number. 
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relative address in the string. The sum of RgShr and 
FIFO contents form the low nibble of the weight 

absolute address in the record. 

On the clock rising edge the first weight 341 

is read from ROM. The comparator () applies the 

rule (5) and compares this weight with the LFSR 
state. The returned value of the W_Bit is stored in 

the FIFO. Next weight that can be read is 512 or 0. 

After r clocks of time FIFO will contains the 

resulted binary code W_Data of the number. This 
number will be the value of the case statement 

selector. The RndBit is a logic value, ‘0’ or ‘1’, 

generated with the probability 1/2. 
In such a way can be generated the number 

with an arbitrary distribution of the probabilities. 

The discrepancy between the expected distribution 
and the one resulted from W-tree model (or 

generated by WNG-unit) will depend on the 

measure scale, i.e. on the weight (the same LFSR) 

size (but this problem is the subject for another 
discussion). 

In our implementation we have designed the 

concurrent (one-shot) version of the WNG unit as 
well. Figure 7 depicts the scheme of the concurrent 

weighted number generator (CWGN), which 

implements a three-level W-tree. On the clock edge 

the weights w10,…, w33 are read from ROM and are 
compared with states of the general linear feedback 

shift register (GLFSR). GLFSR contains the shift 

register with n-bitwise cells [32]. Feedback 
performs the multiplication and addition operations 

over extended Galois field GF(2n). The GLFSR 

outputs are the uniform generated n-bitwise data 
RndWord as well as r-bitwise weighted random 

data W_Data. 

5.3. VHDL-description 

If one-shot WNG-unit is used then it is 

enough to feed the value of PRec and flick it. This 

operation can be performed in parallel with other 
statements of the selected case variant. So, state 

machine design of the test stochastic generator 

encoded in the VHDL language will be the 
following:  

process (clock, reset, W_Data) 
begin 
  if reset = '1' then  State <= S; 
  elsif rising_edge( clock) then 
    case State is 
      when S=>   
          clkAM2901<= '1'; -- generate clock of time for MP 
          flick<= '1'; 
        --equiprobable jump 
          if      RndBit='0'  then   State<= A;  
          else State<= B;  --if RndBit ='1'  
          end if; 
      when A=>   
          clkAM2901<= '0'; 
          flick<= '1'; 
          dst_cod<= ramf;  -- destination code 
          op_cod<= add; -- ALU function code 
          src_cod<= dz; -- source code 
          State<= S; 
      when B=>   
          clkAM2901<= '1'; 
          flick<= '0'; 
          PRec<= "000";   --set the pointer to !( 0..3) 
          State<= C; 
      when C=>   
          clkAM2901<= '0'; 
          flick<= '1'; 
       --weighted (equiprobable) case selection 
          if      W_Data ="000"  then State<= D; 
          elsif  W_Data ="001" then State<= G; 
          elsif  W_Data ="010" then State<= H; 
          else State<= Z; -- if  W_Data ="011" 
          end if; 
       ……………………. 
    end case; 
  end if; 
end process; 

In above listing is presented a fragment of the 
state machine description that implements the test 

program stochastic generator described by grammar 

GSt. 

6. TEST EXPERIMENTS AND RESULTS 

The efficiency of syntactic approach will be 

estimated in comparison with other methods of 
generation, namely, deterministic and pure random. 

In [26] is described an AM2901 deterministic 

test bench based on procedural approach. In the 
Quartus waveform editor we have created the 

verification test cases that must be generated by this 

test bench. We run the simulation. For 185 executed 

Figure 7.  Block diagram of the 

concurrent WNG. 
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instructions the resulted simulation coverage was 
equal to 93,73%. 

 

Further, we have implemented a simple test 
bench scheme shown in figure 8. Three types of test 

experiments were performed where generators Gen1 

and Gen2 were counters, or maximum-length 
sequence generator, or syntactically controlled 

stochastic generator (Gen2). Note that the transition 

probabilities pS() and pC() in GSt were set up 

equiprobable. 

Test experiments were executed by 
increasing of simulation time (parameter End Time 

in the CAD Quartus) step-by-step. The obtained 

values of simulation coverage are plotted in the 
figure 9, where stochastic generator is the controlled 

test program generator which algorithm of 

functioning is defined by stochastic grammar GSt.  

The counter as Gen2 tries all possible states 
like the LFSR as Gen2. At the same time, 

comparing curve 4 with 3, 2 and 1 it is easy to state 

that the simulation coverage of the counter is worse 
then for the random testing. It can be stated also that 

the further improvement of verification quality by 

random stimulus can be achieved only by 

qualitative change of the random generator 
(compare curves 1 and 2 with 3). 

Als

o was 
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variati
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transit
ion 
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bilitie

s pS() 

and 

pC() 
doesn’

t give 

an 
essent

ial 

impro

vement of the simulation coverage (see curves 1 and 
2).  This is because the AM2901 microprocessor 

has a simple architecture that is “insensible” to the 

stylistic of generated stimuli. 

Now, make the comparison of experimental 
results with the theoretical model. Assume that 

apriori probability pe in (3) is the relative frequency 

of “switching” on-off of the elements of memory, 
i.e. the registers. The AM2901 microprocessor has 

16+1=17 registers. So, the number of switching is 

twiced and is equal to 34. Then the probability pe of 

event of switching of the registers is equal to 1/34  

0,029. In the graphic 1 (or 2), shown in figure 8, for 
test length l equal, for example, to 100, we obtain 

the value of confidence level  equal to 0,93. Thus, 

in accordance with relation (3) the expected 

probability Pe(l) of exercising of the MP registers 

on feeding l instructions is approximately equal to 

027,0
93,01

1
ln

100

1



. 

Deviation of experimental test length from 

expected one constitutes about 6% that is the 

acceptable discrepancy between theoretical model 
and experimental results. 

In spite of achieved high level of exercising 

of the nodes of design netlist, some nodes remained 
unexercised. Therefore, for successful completion 

of design verification, the CAD-system should have 

the “ability” to summarize the list of nodes not yet 

exercised. 

CONCLUSIONS 

In this paper a syntactic approach to synthesis 

of stochastic program generator has been presented. 
Theoretical and design issues have been analyzed. 

Experimental results justify the elaborated 

theoretical model. The proposed design solutions 

and VHDL constructions are in accordance with the 
proposals suggested recently in [13]. 

Further improvement of the stochastic test 

program generator can be reached by tuning of the 
transition probabilities repartition of the grammar. 

In fact, if suppose that it is given an arbitrary 

probabilities repartition on events E then the 
relation (3) will be transformed to: 

  



1

1
ln

min

1

e
Ee

p
l . (6) 

So, the task of test quality improvement is 

reduced to increase of low bound of repartition. 
Introduction of the Markov chain can successfully 

solve this new problem (because it is known that a 

noncontextual stochastic grammar can be 

adequately represented by a Markov process). In 

Figure 8. Test bench scheme of AM2901. 
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this case the principle of maximization of the 
entropy of Markov process should be applied to 

increase the low bound of analyzed repartition, and, 

so, to decrease the length of test-verification 
programs. From the other hand, when TPG structure 
corresponds to a stochastic context-free grammar 

then the branching Markov process is needed for 

analysis of the style of generated sentences  (see 
birth and death processes). 

What is the attractive aspect of the syntactic 

approach? Firstly, probabilities provide the varieties 

of test programs. Secondly, greater effect of 
synthesis of an AGP can be achieved by automation 

of the procedure of definition of the generator 

grammar rules.  
The proposed tools facilitate the control of 

the process of the test programs stochastic 

generation and are ready for practical using in 
verification of microprocessors or complex systems 

on chips. These tools are good for synthesisable 

design as well as for (presynthesis) simulation 

design. 
Also it is obvious, that for successful of 

synthesis of test program generators it is necessary 

to supply the hardware description language with 
constructions which provide not only specification 

of structural features, but also the properties 

(attributes) of behavior of microprocessor 
instructions. 

Need to notice that the task of mapping of 

MP-structure to TPG-structure is not yet studied up 

to end. Therefore we hope that the proposed 
syntactic approach to construction of test program 

generators will accelerate the development of 

methods and tools of simulation-based verification 
of microprocessors. 
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