
 Microprocessor verification by syntactically-controlled generation of the test programs 18

MICROPROCESSOR VERIFICATION BY SYNTACTICALLY-

CONTROLLED GENERATION OF THE TEST PROGRAMS

G. Bodean

Technical University of Moldova

INTRODUCTION

Random (stochastic) test generation is an

actual up-to-date direction and efficient technique

for simulation-based verification of large complex
hardware (digital) designs such as microprocessors

[1,…, 9]. From one hand, there exist sophisticated

verification tools for generation, including
controlled, random tests, which are used for

functional verification of processors [10, 11, 12].

From the other hand, it is proposed to add specific
language constructs to HDL to keep the

randomization features [13, 14].

An important issue is the evaluation of the

effectiveness of random test verification methods. A
variety of coverage metrics have been proposed: the

branch coverage and path coverage [15, 16] models

used in software testing [17], finite state machine
based metrics [18,…, 21], an observability metric

[22, 23], and design-specific metrics such as

architectural events [1, 24].

The predecessors paid more attention to
development of the tools that help the user to

control the process of test programs (TP)

generation. Till now the generalized model of
estimation of the test programs quality is not yet

developed. Our objective is to make an advance in

developing the estimation of quality and the
controlled synthesis of the test program generator

(TPG).

In this paper it is proposed the approach,

called syntactic (keeping tradition in [25]), where
the structure of stochastic grammar defines the

controlled languages constructs for weighted

random test generation. The structure of grammar is
“restored” from the microprocessor (MP)

specification just from the instructions set

specification and the interface protocol description.
Here it is used the existing HDL languages

(namely VHDL) features for implementation of the

proposed methodology. In the next section of the

paper the mathematical model for quality evaluation
of the controlled random test generation is

proposed. Then, in section 2, briefly is presented the

unit under verification, and in sections 3, 4, and 5 is
presented the methodology of synthesis of the

(stochastic) grammar generator for simulation-based

verification of a simple microprocessor. In Section

6 the results of microprocessor test benches

simulation are presented and analyzed. The paper

ends with some concluding remarks and ideas about
future development of controlled random testing for

verification.

1. THE LENGTH OF RANDOM TEST

VERIFICATION

To compute the test length we take into

account the tools (simulation coverage Report) of
evaluation of the simulation coverage measure in a

widely used CAD-system such as Quartus II from

Altera. This “estimation” is based on computation

of percentage of exercise (flip-flopping) of the
design’s nodes, more exactly, is checked as the ratio

of output ports actually toggling between 1 and 0

during simulation, compared to the total number of
output ports presented in the netlist.

Let us pe is the probability of exercising of

node e on feeding of a test pattern to inputs of unit

under verification (UUV). So, the probability Pe(l)
of exercising of node e on feeding l test pattern is

equal to

Pe (l)= 1- (1- pe)
l, (1)

where eE, E is the netlist of design.
For the small values of pe results the

inequality:

1- (1- pe)
l 1- exp(-l pe) (2)

Accepting as the level of confidence (vs

risc) of the random test verification of length l, i.e.

Pe(l)= , from (1) and (2) is follows:

1

1
ln

1

ep
l . (3)

For computation l the level of confidence
and the probability pe must be known before. For

example, if the values of are equal to 0.632;

0.865; 0,95; 0,982 etc., then values of random test

length are: l = 1/pe; 2/pe; 3/pe; 4/pe etc.

It is easy to prove that the formula (3) is valid
also if the path coverage metric is used. The value

(3) is an apriori estimation of the verification test

length l and is well correlated with experimental
data presented in referenced bibliography.

 Microprocessor verification by syntactically-controlled generation of the test programs 19

Thus, we obtain a theoretical model of
estimation random test verification quality. But, any

theoretical model must be approved practically. In

the further sections of the paper we develop the

syntactic model of random generator for
microprocessor verification. Some verification

experiments will be performed and the resulted test

length will be compared with expected one.

2. BRIEF PRESENTATION OF UNIT

UNDER VERIFICATION

The considered unit under verification is a 4-
bit microprocessor slice AM2901. Its full VHDL

description is available from [26]. Figure 1 depicts

the AM2901 microprocessor as a gray-box. Slice-

MP contains the following functional units: two-
address RAM array RAM_Regs, the one-word shift

register Q_Reg, the source operand multiplexer

Src_op, the arithmetic logic unit ALU that performs
three arithmetic operations and five logic functions

of two 4-bit operands, the output multiplexer

Out_Mux. The a and b 4-bit addresses are used to

address the RAM_Regs 16-word register file, where
size of the word is equal 4 bit.

Signal d is a direct input to the r source

operand multiplexer. Signal q represents the
contents of Q_Reg and feeds the s to source

operand multiplexer. The ALU has carry-in cin,

carry-out cout and other additional signals.
The function of MP-slice is defined by a 9-bit

microinstruction i. Three bits i[2:0] define the

source operands, i[5:3] – ALU function, and i[8:6] –

ALU destination.
Thus, the stimuli are the signals and

instructions with predefined structure (syntax). This

property is common for all microprocessors. So,
further analysis can be extended to general case.

3. PROPOSED TECHNIQUE

In the study case there is no limitations on the

syntax of generated test sequences. But the
instructions must be arranged under a certain rule.

The objective of test generation process is the

synthesis of test (micro)programs with a specific

syntax. From this point of view some instructions
load the data in the memory’s elements, others -

process or/and unload the data from them.

Thus, the rule of composition of the test
program structure can be formulated by the next

paradigm:

“data load inherently data process

unload (and analysis) of results”. (4)

The rule (4) expresses the semantic aspect of
the objective of random test programs generation. In

the other words, rule (4) reflects the stochastic

generation process of test programs with data
dependency and can be accepted as a link between

functional (behavioral) model of the MP [31] and

rules of construction of TPG, proposed in [29].

More sophisticated type of dependences can
be introduced: primary, data, instructional, and

functional. Primary (structural) dependence defines

the syntax of instructions. Data dependence appears
when is needed to set up the transition of data

between the instructions. There are 3 types of data

dependences: read after write, write after read, and
write after write. Data dependence frequently

occurs in pipeline design. Instructional dependence

defines the link between MP specific instructions,

e.g. push-pop, loop-exit, call-return, etc. Functional
(behavioral) dependence is established by an

experienced designer on basis of his knowledge of

behavior of the design entities (modules).
To provide the condition (4) let us represent

the component parts of instruction, i.e. ALU

functions and operands, by a graphical images
(pictograms). The pictogram of component consists

of terminal and internal nodes that represent the

elements of memory (registers) and ALU functions

(symbol). There are 8 ALU source+function

pictograms: s0..s7, and 8 destination pictograms:
d0..d7 (see Tables 6-1, 6-2 and 6-3 in [26]). The

arcs mean transition of data. The zigzag-arc means

selection of the RAM word.

The pictograms are connected (“glued”) by
suitable terminal nodes (like in puzzle-game). The

gluing of pictograms is performed in the following

way: source with destination creates an instruction
structure (word in the sentence), and resulted

structure is connected with another instruction

structure, thus “building” a sentence, i.e. test
program. This process can be executed recursively.

All connections are performed according rule (4).
Figure 1. AM2901 block diagram.

i[8:6]

y[3:0]

RAM_Regs
a[3:0]

b[3:0]

Src_op

r s
d[3:0]

ALU

Out_Mux oe

cin
cout

i[5:3]

i[2:0]

i[8:6]
Q_Reg

f_0

i[8:0]

qs0 qs3

q[3:0]

f[3:0]

 Microprocessor verification by syntactically-controlled generation of the test programs 20

Some typical pictograms and a fragment of glued
pictogram are shown in figure 2. The node RNG in

figure 2, c) means a random number generator.

Introduced pictograms can be used prototype
for wizard tools of automation of synthesis of the

test program stochastic generator. This illustrative

representation of the structure (syntax) of generated

sequences is an intermediary step for jump to
formal synthesis of generation grammar of the

random test programs.

4. SYNTHESIS OF THE TEST

PROGRAM GENERATOR

The technique of synthesis of the syntax test
generator, inclusively generation of random test

cases, is well known for compiler testing [27,28].

The test cases generator is controlled by
programming language syntactic diagram (SD).

And the SD is needed for a MP to generate the

syntactic correct test programs. But the MP
specification doesn’t have such SD. Many efforts

must be made to construct (synthesis) a

syntactically (and, may be, semantically) correct

model of the random TPG [29]. But in our study
case the MP is a simple one. Accepting the rule (4)

and assuming the degree=2 for data dependence it

was synthesized the random syntactic tree, shown in
figure 3.

In the figure 3 callout !(..) mean equiprobable

generation of item and the non marked fan-out
branches have uniform probabilities.

A stochastic grammar can be associated with

this tree. A grammar is defined by a 4-tuple G=(VN,

VT, R, S) where VN and VT are nonempty sets of
terminal and nonterminal symbols, respectively.

The symbol S, SVN is called the starting symbol
and V=. VN VT is the vocabulary of G. The finite

nonempty set R of (VVNV)V is called production
rules. In a stochastic grammar Gs with each

production iij is associated a probability pij,

where and are strings of symbols over the

vocabulary, 0 pij 1, 1 i k, 1 j mi, 1
1

im

j
ijp .

For the study case we have the next stochastic

grammar GSt:

VN = {S, A, B, C, D, E, F, H, Z}

VT = {s0,…,s7, d0,…,d7, 0,…,7}

S = S

R = { 7'0'3 sdS SAp
 , BOCS SBp

 ,

0
7/1

sB , 1
7/1

sB , …, 6
7/1

sB ,

'0'
8/1
O , '1'

8/1
O ,…, '7'

8/1
O ,

DCdC CDp
0 , FBC CFp

 , HSC CHp
 ,

SdC CZp
1 , OCsD 2

2/1
 , OCsD 6

2/1
 ,

2
4/1

dF , 3
4/1

dF , 5
4/1

dF ,

7
4/1

dF , 4
2/1

dH , 6
2/1

dH }.

The synthesis of TPG is reduced to definition

of generator grammar production rules. The syntax

of grammar (structure of TPG) can be synthesized
(builded), for example, by the top-down recursive

descent parsing method, analyzed in [29]. The

syntax of grammar should guarantee that the

derived TP would always be valid.

The repartition of probabilities P (R) on rules

of set R is called syntactic style [30]. In accordance

with Chomsky classification the grammar GSt is of

type 2, i.e. is noncontextual (context-free). The
grammar GSt defines the structure of the random

Figure 2. Pictograms of AM2901 -instructions:

(a) source operand and ALU function,

(b) ALU destination, and (c) example of

“gluing” pictogram.

A RAM

RgA

Q

B A

RNG

F

OUT Q

A RAM

RgA

B

RgB

D 0

B

RAM
Q

Q

F

OUT

a)

b) c)

s0 s7

d4

s1

d0

pSB pSA

Figure 3. Probabilistic syntactic tree for
generator of AM2901.

A

add d,#0

S

Src<= !(s0..s6),
Op<= !(0..7)

B

S

pCZ
pCD

pCF pCH

C

D

d0

s2 s6

E

F H Z

Op<= !(0..7)

C

d2 d3 d5 d7

B

d4 d6

S

d1

S

 Microprocessor verification by syntactically-controlled generation of the test programs 21

(weighted) test program generator for verification of
the AM2901 slice-MP. In the HDL language, in

particular VHDL, is needed to have the

corresponding mechanism to produce a sentence in

grammar GSt. Also note that some transition
probabilities have the predefined values and another

probabilities, such as pS() and pC() , are undefined.

The undefined probabilities will be defined later.

5. WEIGHTED CASE STATEMENT

The weighted case statement differ form the
classical one by that in accordance with predefined

repartition of probabilities the selector variable get a

value from the sample of numbers. It is obvious that

the existing linguistic tools can emulate such
weighted case. To do this, initially is needed to

generate the value of selector, then, after this, to

jump on the corresponding variant.

5.1. Model

The model of weighted number generator is
the probabilistic binary tree (P-tree). Figure 4

depicts the binary tree of code of a 2-bit number and

corresponding to it P-tree. The probability of an

outcome is the product of the probabilities on the
path from the root to the vertex. Starting from the

known repartition of the probabilities on vertex

(leafs) of the P-tree it is easy to restore the
conditional probabilities on each tree’s branch.

From the practical point of view it is more

suitable to represent the P-tree by a weighted binary

tree (W-tree). In this case the weighted choice of a
bit value consists in performing of one VHDL-

statement:

if Weight> LFSR then return(‘1’); else return(‘0’); (5)

where LFSR is a state of the linear feedback shift

register of size n, 0 Weight 2n-1

5.2. Implementation

The weighted generation of a number is
based on recursive execution of statement (5). For

example, if it is needed to equiprobable select of a

number from 0 to 5, then the corresponding P-tree

and W-tree will looks as it is shown in figure 5.
Note that the arcs of W-tree in figure 5 (b) are

labeled by the relative weights.

On implementing the W-tree, each of its level
is coded by a string of weights. Because each fan-

out node contains the complementary probabilities

then the i-th string contains 2i weights, namely

weight of the right branch, where i= 0,…,r-1,

r=log2N, N is the maximum value of the number.
The resulted record of strings is stored in the

(RAM) array from where the weights are

conditionally read. Thus, was described the

(recursive) weighted number generator (WNG) unit,
which diagram is shown in figure 6.

The behavior of WNG-unit is the following.

Let be the W-tree shown in figure 5, b) and size of
LFSR equal to n=10. So, the corresponding record

of weights is:

0: 341
levels 1: 512, 0

2: 512, 512, 512, 0

which is written in the ROM as PRec=0, where

PRec points to the base address of a record.

Functioning of the WNG-unit starts with
flicking the feeding value of the PRec, that is the

high nibble(pointer to) of the record address. Also,

the flick signal reset the shift registers RgShr and
FIFO. The register RgShr indexes the string in the

record: 0, 1, 3, 7 etc. The register FIFO indexes the

b) a)

Figure 4. Binary (a) and probabilistic (b)

trees of the 2-bit number.

1 1

0

0

00 01 10 11

1

0 p(0/1) p(1/1) p(1/0)

p(1)

p(0/0)

p(0)

p(00) p(01) p(10) p(11)

b) a)

Figure 5. P-tree (a) and W-tree (b) of

equiprobable generation of

numbers from 0 to 5.

0

1 1

1 0

1 1

3 2

1 1

5 4

1 1

1 2
2/3

1/2 1/2 1

1/3

1/2 1/2

0 1

1/2 1/2

0 1

1/2 1/2

0 1

Figure 6. Block diagram of the weighted

number generator.

index

‘1’

PRec

W_Data

flick

clock

Addr RndBit
Weight

Low
nibble >

LFSR
ROM

A

C

FIFO RgShr

ADD

W_Bit

High
nibble

Rg

 Microprocessor verification by syntactically-controlled generation of the test programs 22

relative address in the string. The sum of RgShr and
FIFO contents form the low nibble of the weight

absolute address in the record.

On the clock rising edge the first weight 341

is read from ROM. The comparator () applies the

rule (5) and compares this weight with the LFSR
state. The returned value of the W_Bit is stored in

the FIFO. Next weight that can be read is 512 or 0.

After r clocks of time FIFO will contains the

resulted binary code W_Data of the number. This
number will be the value of the case statement

selector. The RndBit is a logic value, ‘0’ or ‘1’,

generated with the probability 1/2.
In such a way can be generated the number

with an arbitrary distribution of the probabilities.

The discrepancy between the expected distribution
and the one resulted from W-tree model (or

generated by WNG-unit) will depend on the

measure scale, i.e. on the weight (the same LFSR)

size (but this problem is the subject for another
discussion).

In our implementation we have designed the

concurrent (one-shot) version of the WNG unit as
well. Figure 7 depicts the scheme of the concurrent

weighted number generator (CWGN), which

implements a three-level W-tree. On the clock edge

the weights w10,…, w33 are read from ROM and are
compared with states of the general linear feedback

shift register (GLFSR). GLFSR contains the shift

register with n-bitwise cells [32]. Feedback
performs the multiplication and addition operations

over extended Galois field GF(2n). The GLFSR

outputs are the uniform generated n-bitwise data
RndWord as well as r-bitwise weighted random

data W_Data.

5.3. VHDL-description

If one-shot WNG-unit is used then it is

enough to feed the value of PRec and flick it. This

operation can be performed in parallel with other
statements of the selected case variant. So, state

machine design of the test stochastic generator

encoded in the VHDL language will be the
following:

process (clock, reset, W_Data)
begin
 if reset = '1' then State <= S;
 elsif rising_edge(clock) then
 case State is
 when S=>
 clkAM2901<= '1'; -- generate clock of time for MP
 flick<= '1';
 --equiprobable jump
 if RndBit='0' then State<= A;
 else State<= B; --if RndBit ='1'
 end if;
 when A=>
 clkAM2901<= '0';
 flick<= '1';
 dst_cod<= ramf; -- destination code
 op_cod<= add; -- ALU function code
 src_cod<= dz; -- source code
 State<= S;
 when B=>
 clkAM2901<= '1';
 flick<= '0';
 PRec<= "000"; --set the pointer to !(0..3)
 State<= C;
 when C=>
 clkAM2901<= '0';
 flick<= '1';
 --weighted (equiprobable) case selection
 if W_Data ="000" then State<= D;
 elsif W_Data ="001" then State<= G;
 elsif W_Data ="010" then State<= H;
 else State<= Z; -- if W_Data ="011"
 end if;
 …………………….
 end case;
 end if;
end process;

In above listing is presented a fragment of the
state machine description that implements the test

program stochastic generator described by grammar

GSt.

6. TEST EXPERIMENTS AND RESULTS

The efficiency of syntactic approach will be

estimated in comparison with other methods of
generation, namely, deterministic and pure random.

In [26] is described an AM2901 deterministic

test bench based on procedural approach. In the
Quartus waveform editor we have created the

verification test cases that must be generated by this

test bench. We run the simulation. For 185 executed

Figure 7. Block diagram of the

concurrent WNG.

w33

w32

w31

w30

w21

w20

w10

>

RndWord
GLFSR

>

>

ROM

MX

0/1

W_Data

LSB MSB

 Microprocessor verification by syntactically-controlled generation of the test programs 23

instructions the resulted simulation coverage was
equal to 93,73%.

Further, we have implemented a simple test
bench scheme shown in figure 8. Three types of test

experiments were performed where generators Gen1

and Gen2 were counters, or maximum-length
sequence generator, or syntactically controlled

stochastic generator (Gen2). Note that the transition

probabilities pS() and pC() in GSt were set up

equiprobable.

Test experiments were executed by
increasing of simulation time (parameter End Time

in the CAD Quartus) step-by-step. The obtained

values of simulation coverage are plotted in the
figure 9, where stochastic generator is the controlled

test program generator which algorithm of

functioning is defined by stochastic grammar GSt.

The counter as Gen2 tries all possible states
like the LFSR as Gen2. At the same time,

comparing curve 4 with 3, 2 and 1 it is easy to state

that the simulation coverage of the counter is worse
then for the random testing. It can be stated also that

the further improvement of verification quality by

random stimulus can be achieved only by

qualitative change of the random generator
(compare curves 1 and 2 with 3).

Als

o was
establi

shed

that
the

variati

on of

transit
ion

proba

bilitie

s pS()

and

pC()
doesn’

t give

an
essent

ial

impro

vement of the simulation coverage (see curves 1 and
2). This is because the AM2901 microprocessor

has a simple architecture that is “insensible” to the

stylistic of generated stimuli.

Now, make the comparison of experimental
results with the theoretical model. Assume that

apriori probability pe in (3) is the relative frequency

of “switching” on-off of the elements of memory,
i.e. the registers. The AM2901 microprocessor has

16+1=17 registers. So, the number of switching is

twiced and is equal to 34. Then the probability pe of

event of switching of the registers is equal to 1/34

0,029. In the graphic 1 (or 2), shown in figure 8, for
test length l equal, for example, to 100, we obtain

the value of confidence level equal to 0,93. Thus,

in accordance with relation (3) the expected

probability Pe(l) of exercising of the MP registers

on feeding l instructions is approximately equal to

027,0
93,01

1
ln

100

1

.

Deviation of experimental test length from

expected one constitutes about 6% that is the

acceptable discrepancy between theoretical model
and experimental results.

In spite of achieved high level of exercising

of the nodes of design netlist, some nodes remained
unexercised. Therefore, for successful completion

of design verification, the CAD-system should have

the “ability” to summarize the list of nodes not yet

exercised.

CONCLUSIONS

In this paper a syntactic approach to synthesis

of stochastic program generator has been presented.
Theoretical and design issues have been analyzed.

Experimental results justify the elaborated

theoretical model. The proposed design solutions

and VHDL constructions are in accordance with the
proposals suggested recently in [13].

Further improvement of the stochastic test

program generator can be reached by tuning of the
transition probabilities repartition of the grammar.

In fact, if suppose that it is given an arbitrary

probabilities repartition on events E then the
relation (3) will be transformed to:

1

1
ln

min

1

e
Ee

p
l . (6)

So, the task of test quality improvement is

reduced to increase of low bound of repartition.
Introduction of the Markov chain can successfully

solve this new problem (because it is known that a

noncontextual stochastic grammar can be

adequately represented by a Markov process). In

Figure 8. Test bench scheme of AM2901.

9

4
Gen1

A
M

2
9
0
1

a
b

d

i

y

Gen2

qs0
qs3

1

3

4

2

Figure 9. The AM2901 simulation coverage

for instructions generated by:
1, 2 – stochastic generator;

3 – pure random generator;

4 – counter generator.

 Microprocessor verification by syntactically-controlled generation of the test programs 24

this case the principle of maximization of the
entropy of Markov process should be applied to

increase the low bound of analyzed repartition, and,

so, to decrease the length of test-verification
programs. From the other hand, when TPG structure
corresponds to a stochastic context-free grammar

then the branching Markov process is needed for

analysis of the style of generated sentences (see
birth and death processes).

What is the attractive aspect of the syntactic

approach? Firstly, probabilities provide the varieties

of test programs. Secondly, greater effect of
synthesis of an AGP can be achieved by automation

of the procedure of definition of the generator

grammar rules.
The proposed tools facilitate the control of

the process of the test programs stochastic

generation and are ready for practical using in
verification of microprocessors or complex systems

on chips. These tools are good for synthesisable

design as well as for (presynthesis) simulation

design.
Also it is obvious, that for successful of

synthesis of test program generators it is necessary

to supply the hardware description language with
constructions which provide not only specification

of structural features, but also the properties

(attributes) of behavior of microprocessor
instructions.

Need to notice that the task of mapping of

MP-structure to TPG-structure is not yet studied up

to end. Therefore we hope that the proposed
syntactic approach to construction of test program

generators will accelerate the development of

methods and tools of simulation-based verification
of microprocessors.

References

1. Kantrowitz M., Noack L. M. I’m Done

Simulating; Now What? Verification Coverage
Analysis and Correctness Checking of the DECchip

21164 Alpha microprocessor. Proc. Design

Automation Conf., 1996, pp. 325–330.

2. Walter J., Leenstra J., Dottling G., Leppla
B., Munster H.-J., Kark K., Wile B. Hierarchical

Random Simulation Approach for the Verification

of S/390 CMOS Multiprocessors. – Proceedings of
the 34th DAC, 1997, pp.89-94.

3. Abts D., Roberts M. Verifying Large Scale

Multiprocessors Using an Abstract Verification

Environment, DAC 1999, pp.163-168.

4. Khailany B., Dally W. J., Chang A., Kapasi

U. J., Namkoong J., Towles B. VLSI Design and

Verification of the Imagine Processor Proceedings
of the 2002 International Conference on Computer

Design, 2002, pp.289-294.

5. Behm M., Ludden J., Lichtenstein Y., Rimon
M., Vinov M. Industrial Experience with Test

Generation Languages for Processor Verification

DAC 2004, June 7–11, 2004, San Diego, California,

USA.- 2004, pp.36-40.
6. Wagner I., Bertacco V., Austin T.. Stress

Test: An automatic approach to test generation via

activity monitors. DAC, Proceedings of Design
Automation Conference, 2005, pp.783-788.

7. Bhaskar K.U., Prasanth M., Chandramouli

G., Kamakoti V. A universal random test generator

for functional verification of microprocessors and
system-on-chip VLSI Design, 2005. 18th

International Conference on Volume , Issue , 3-7

Jan. 2005, pp. 207 – 212.
8. Henrique J.-P. Verification of

STMicroelectronics Configurable Processor CDN

Live EMEA June 2006. [Online]. Available:
http://www.cdnuser.org

9. Mallesham Boini, Complex SoC Verification

Using and ARM Processor – Design Strategies and

Methodologies, Information Quarterly , Volume 5,
Number 4, 2006, pp. 62- 65.

10. Poe E.A. Theory of Operation Basic and

Advanced Random Test Generators (2004).
[Online]. Available: http://

www.obsidiansoft.com/files/operation.pdf

11. Rosebrugh C. Using Vera and Constrained-
Random Verification to Improve Design Ware Core

Quality – The Synopsys Verification Avenue

Technical Bulletin, Vol. 4, issue 4, December 2004.

(2004). [Online]. Available: http:// www.open-
vera.com/technical/

12. [Online]. Available: http://

www.aldec.com/solutions/hdlverification/
13. Lewis J. Accellera VHDL-TC Extensions-SC

Randomization (2007). [Online]. Available: http://

www.accelera.org/apps/group_public/download.ph

p/905/Randomization-V1.pdf
14. Freitas A. Shadow model and coverage

driven processor verification using SystemVerilog

[Online]. Available: http://www.edatechforum.com
/journal/june2007shadow.cfm/

15. Aharon A., Bar-David A., Dorfman B.,

Gofman E., Leibowitz M., and Schwartzburd V.
Verification of the IBM RISC System/6000 by

dynamic biased pseudo-random test program

generator. IBM Systems Journal, 1991,pp. 527–538.

16. Vemuri R. and Kalyanaraman R..
Generation of design verification tests from

behavioral VHDL programs using path

enumeration and constraint programming. IEEE
Trans. on VLSI, 1995, pp. 201–214.

17. Beizer B., Software Testing Techniques,

Second Ed., Van Nostrand Reinhold, 1990. – 550 P.
18. Cheng K.-T. and Krishnakumar A. S.,

Automatic functional test bench generation using

 Microprocessor verification by syntactically-controlled generation of the test programs 25

the extended finite state machine model, Design
Automation Conference, 1993, pp. 1–6.

19. Ho R. C., Yang C. H., Horowitz M. A., and

Dill D. L., Architecture validation for processors,

International Symposium on Computer
Architecture, 1995,.pp. 404–413.

20. Lee D. and Yannakakis M. Principles and

methods of testing finite state machines - a survey,
IEEE Transactions on Computers, vol. 84, pp.

1090–1123, August 1996.

21. Moundanos D., Abraham J. A., and Hoskote

Y. V. Abstraction techniques for validation
coverage analysis and test generation. IEEE Trans.

Computers, vol. 47, no. 1, January 1998, pp. 2–14.

22. Devadas S., Ghosh A., and Keutzer K.
Observability-based code coverage metric for

functional simulation. Proc. Int. Conf. Computer-

Aided Design, 1996, pp. 418–425.

23. Fallah F., Devadas S., and Keutzer K..
OCCOM: Efficient computation of observability-

based code coverage metric for functional

simulation. Proc. Design Automation Conf., 1998,
pp. 152–157.

24. Taylor S., Quinn M., Brown D., Dohm N.,

Hildebrandt S., Huggins J., and Ramey C..
Functional verification of a multiple-issue, out-of-

order, superscalar Alpha processor - the DEC

Alpha 21264 microprocessor. Proc. Design
Automation Conf., 1998, pp. 638–643.

25. .Fu K.S. Syntactic pattern recognition and

applications, Englewood Cliffs, NJ, Prentice Hall,

1982. – 596 P.
26. Skahill K. VHDL for Programmable Logic,

Addison-Wesley Publ., 1996, - 594 P.

27. Hanford K.V. Automatic generation of test
cases, IBM Systems Journal, vol. 9, No.4, 1970,

pp.242-257,.

28. Bird D.L. and Munoz C.U. Automatic

generation of random self-checking test cases, IBM
Systems Journal, vol. 22, No.3, 1983, pp.229-245.

29. Wu L.-M., Wang K., and Chiu C.-Y. A BNF-

Based Automatic Test Program Generator for
Compatible Microprocessor Verification, ACM

Trans. on Design Automation of Electronic Systems,

vol.9, No. 1, 2004, pp.105-132.
30. Grenander U. Pattern Analysis, Vol. II,

Springer Verlag, 1978.

31. Thatte S.M., and Abraham J.A. Test

generation for microprocessors. IEEE Trans.
Comput. C-29, No. 6, 1980, pp.429–441.

32. Pradhan D.K., Chatterjee M. GLFSR– a new

test pattern generator for built-in-self-test. IEEE
Trans. on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 18, No.2, 1999, pp. 238-

247.

Aprobat spre publicare:

	INTRODUCTION
	1. THE LENGTH OF RANDOM TEST VERIFICATION
	2. BRIEF PRESENTATION OF UNIT UNDER VERIFICATION
	3. PROPOSED TECHNIQUE
	4. SYNTHESIS OF THE TEST PROGRAM GENERATOR
	CONCLUSIONS

	F
	Q
	Q (1)
	Q (2)
	Q (3)
	MX

