International Symposium "Actual Problems of Mathematics and Informatics" dedicated to the 90th birthday of professor Ion Valuță, November 27-28, 2020, Chişinău, Moldova

On the semigroup of endomorphisms of a topological universal algebra

CHOBAN MITROFAN AND VALUȚĂ ION

Let $\mathbb{N} = \{1, 2, ...\}$ be the set of natural numbers and $n \in \omega = \{0, 1, 2, ...\}$ be the set of non-negative integers. The discrete sum $\Omega = \bigoplus \{\Omega_n : n \in N = \{0, 1, 2, ...\}\}$ of the pairwise disjoint topological spaces $\{\Omega_n : n \in N\}$ is called a continuous signature. If the space Ω is a discrete space, then we say that Ω is a discrete signature.

A topological Ω -algebra or a topological universal algebra of the signature Ω is a family $\{G, e_{nG} : n \in N\}$, where G is a non-empty topological space and e_{nG} : $\Omega_n \times G^n \to G$ is a continuous mapping for each $n \in \omega$. The concept of universal algebra was created by Alfred North Whitehead in 1898 as a generalization of Boole's logical algebras. The term universal algebra was proposed by James Joseph Sylvester [9]. Between 1935 and 1950 important works were published by Garrett Birkhoff [1, 2]. As in [4, 5, 7, 8] we continue the study of semigroups of endomorphisms of universal topological algebras.

Let *A*, *B* and *C* be three topological universal algebras of signature Ω . The function $f : A \longrightarrow B$ is called a morphism or homomorphism, if $f(u(x)) = u(f^n(x))$ for any $n \in \omega$, any $u \in \Omega_n$ and any element $x = (x_1, x_2, ..., x_n) \in G^n$, where $f^n(x) = (f(x_1), f(x_2), ..., f(x_n))$. The composition of the functions $f : A \longrightarrow B$ and $g : B \longrightarrow C$ is the function $h = f \cdot g : A \longrightarrow C$, where h(x) = g(f(x)) for any $x \in A$. The composition of two continuous morphisms is always a continuous morphism. A morphism that is a bijective function is called an isomorphism. An isomorphism which is a homeomorphisms called a topological isomorphism.

If a topological isomorphism can be established between two topological universal algebras, they are called topologic isomorphs. Two topological isomorphs topological universal algebras are identified. Morphisms, respectively isomorphisms, between a topological universal algebra and itself are called endomorphisms, respectively automorphisms.

A semigroup *S* equipped with a topology is called a semi-topological semigroup if the tranlations $\{u_a, \varphi_b : a, b \in G\}$, where $u_a(x)a \cdot x$ and $\varphi_b(x)$ for all $a, b, x \in S$, are continuous mappings of the space *S* into itself. The family of all continuous endomorphisms $End_c(G)$ of a topological universal algebra G relatively to the operation of composition $f \cdot g$ is a semigroup with the unity. The semigroup $End_c(G)$ in the topology of pointwise convergence is a semi-topological semigroup.

Let Ω be a fixed signature. A topological universal algebra *G* is a topological free universal algebra in some class of universal algebras if there is given a subspace $I = I_G \subset G$ with the properties:

1) the algebra G is generate by the set I, i.e. $G = s_G(I)$, and I is called the space of generators of G;

2) for any continuous mapping $f : I \longrightarrow G$ there exists a (unique) continuous endomorphism $\hat{f} : G \longrightarrow G$ such that $f(x) = \hat{f}(x)$ for each $x \in I$.

A universal algebra A is called cyclic if there exists a point $a \in G$ such that the set $\{a\}$ generate the algebra G.

G. Gratzer and E. T. Schmidt [3] proved that any complete lattice is isomorphic to the lattice of congruence of some universal algebra.

The following theorem is a generalization and conceptualization of the theorem from ([8], pag.98).

Theorem 1. For any semi-topological semigroup with unity S there exist a discrete signature Ω and a topological universal algebra G_S of signature Ω such that the semi-topological semigroups S and End (G_S) are topological isomorphic.

Theorem 2. For any topological semigroup with unity S there exist a continuous signature Ω and a topological universal algebra G_S of signature Ω such that the topological semigroups S and $End(G_S)$ are topological isomorphic.

References:

1. G. Birkhoff, On the structure of abstract algebras, Proc. Camb. Philos. Soc. 31 (1935), 433-454.

2. G. Birkhoff, *Universal algebra*, Comptes Rendus du Premier Congres Canadien de Mathematiques, University of Toronto Press, Toronto, 1946, 310-326.

3. Gratzer, E. T. Schmidt, *Characterizations of congruence lattices of abstract algebras*, Acta Sci. Math. (1963), no. 24, 34-59.

4. I. I. Valuță (Valutsa), Left ideals of the semigroup of endomorphisms of a free universal algebra, Dokl. Akad. Nauk SSSR 150 (1963), 235-237.

5. I. I. Valuță, *Left ideals of the semigroup of endomorphisms of a free universal algebra*, Matem. Sb. 62 (1963), no. 3, 371-384.

6. I. I. Valuță, *Ideals of the algebra of endomorphisms of a free universal algebra*, Matematicheskie Issledovania, Kishinev, 3 (1968), no. 2, 104-112.

ON THE SEMIGROUP OF ENDOMORPHISMS OF A TOPOLOGICAL UNIVERSAL ALGEBRA

7. I. I. Valuță, *About ideals semigroups of transformations*, Issledovania po Algebre, Kishinev: Izd. AN MSSR, 1965, 67-80.

8. I. I. Valuță, Mappings. Algebraical aspects of the theory, Kishinev: Shtiitsa, 1976.

9. A. N. Whitehead, A Treatise on Universal Algebra, Cambridge, 1898.

(CHOBAN Mitrofan) Department of Mathematics, Tiraspol State University, Chişinău, Republic of Moldova,

E-mail address: mmchoban@gmail.com

(VALUȚĂ Ion) Department of Mathematics, Technical University of Moldova, Chișinău, Republic of Moldova