The group of c-reflective subcategories

BOTNARU Dumitru

In the subcategory $C_{2} \mathcal{V}$, of topological vector locally convex spaces Hausdorff, \mathbb{R}_{c} is the lattice of subcategories c-reflective.

Definition 1. A reflective subcategory it's called c-reflective, if it contains a subcategory \mathcal{S} of spaces with weak topology and reflector functor $r: C_{2} \mathcal{V} \rightarrow \mathcal{R}$ is exactly to the left.

Theorem 1. For any subcategory \mathcal{R}, which contains the subcategory \mathcal{S}, there is the largest subcategory c-reflective $\overline{\mathcal{R}}$, what is contained in \mathcal{R}.

Any c-reflective subcategory \mathcal{L} defines a pair of conjugate subcategories $(\mathcal{K}, \mathcal{L})$, where \mathcal{K} is a coreflective subcategory [1].

Let $(\mathcal{K}, \mathcal{L})$ and $(\mathcal{F}, \mathcal{R})$ be two pairs of conjugated subcategories, $\mathcal{T}=\mathcal{L} \cap \mathcal{R}$ and $\mathcal{U}=\sup (\mathcal{K}, \mathcal{F})$, where the supreme is examined in the class of the coreflective subcategories of the category $C_{2} \mathcal{V}$.

For $\mathcal{L}, \mathcal{R} \in \mathbb{R}_{c}$ let $\rho(\mathcal{L}, \mathcal{R})$ be the full subcategory of all objects of category $\mathcal{C}_{2} \mathcal{V}$ for which \mathcal{L} - and \mathcal{R}-replicas coincide.

Theorem. Let $\mathcal{L}, \mathcal{R} \in \mathbb{R}_{c}$ be. Then
(1) $\rho(\mathcal{L}, \mathcal{R})$ is a reflective subcategory that contains the subcategory \mathcal{S}.
(2) $\rho(\mathcal{L}, \mathcal{R})$ is a \mathcal{T}-semireflexive subcategory [2].
(3) $\rho(\mathcal{L}, \mathcal{R})$ is a \mathcal{T}-semireflexive subcategory [2].

Theorem. Let $\mathcal{L}, \mathcal{R} \in \mathbb{R}_{c}$ be. The binary operation $\mathcal{L} \oplus \mathcal{R}=\overline{\rho(\mathcal{L}, \mathcal{R})}$ possess the following properties:
(1) \oplus is a commutative operation.
(2) $C_{2} \mathcal{V}$ is a neutral element: $\rho\left(C_{2} \mathcal{V}, \mathcal{L}\right)=\mathcal{L}=C_{2} \mathcal{V} \oplus \mathcal{L}$.
(3) Each element coincides with its neutral: $\rho(\mathcal{L}, \mathcal{L})=C_{2} \mathcal{V}=\mathcal{L} \oplus \mathcal{L}$.

References

[1] Botnaru D., Couples des sous-catégories conjugées, ROMAI J. 14(2018), 1, 23-41.
[2] Botnaru D., Groupoïd des sous-catégories L-semi-réflexives, Rev. Roumaine Math. Pures Appl., 63(2018), 1, 61-71.
[3] Dumitru Botnaru, Alina Ţurcanu, The factorization of the right product of two subcategories, ROMAI Journal, VI (2010), 2, 41-53.
(BOTNARU Dumitru)
E-mail address: dumitru.botnaru@gmail.com

