

302

8th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
S u c e a v a, R o m a n i a, M a y 25 – 27, 2 0 0 6

DESCRIPTIVE TIMED MEMBRANE PETRI NETS
FOR PERFORMANCE MODELLING
OF PARALLEL AND DISTRIBUTED COMPUTING

Emilian GUŢULEAC1, Ion BALMUŞ2, Iurie ŢURCANU3, Emilia GUŢULEAC4
Computer Science Department, Technical University of Moldova
Bul. Stefan cel Mare nr. 168, MD-2004 Chisinau, Republic of Moldova
1egutuleac@mail.utm.md

Abstract. In order to capture the compartmentalization and the behaviour of membrane systems for
performance modelling of parallel and distributed computing, we introduce the Descriptive Timed Membrane
Petri Nets (DM-nets) that can modify, in run-time, their own structure by rewriting some of their descriptive
expression components. Furthermore, this descriptive approach facilitates the understanding of complex models
and their component-based construction as well as the application of modern computer engineering concepts.
Keywords: membrane systems, parallel computing, performance modeling, Petri nets.

Introduction

Recent technological achievements require
advances beyond the existing computational
models in order to be used effectively.
Pragmatic aspects of current and future
computer systems will be modelled so that
realistic estimations of efficiency can be given
for algorithms in these new settings.
Petri nets (PN) are very popular formalism for
the analysis and representation of parallel and
distributed computing in concurrent systems,
that has drawn much attention to modeling and
verification of this type of systems [1, 3].
P-systems, also referred to as membrane
systems, are a class of parallel and distributed
computing models inspired from the structure
and the functioning of living cells [5].
The interest of relating P systems with the PN
model of computation leads to several important
results on simulation and decidability issues.
Some efforts have been made to simulate P
systems with Petri nets [4, 6] in order to verify
the many useful behavioral properties such as
reachability, boundedness, liveness,
terminating, deadlock-free, etc.
In this paper we propose a new approach to
define the components of continuous-time P
systems [5] through components of Descriptive
Petri Nets (DPN) using descriptive expressions

(DE) [2]. The DE formalism is used for
analytical representation and compositional
construction of PN models.
In order to model specific rules of P Systems
within the framework of the Descriptive
Rewriting Timed PN (RTN) [3], we introduce a
new extension of RTN - the Descriptive Timed
Membrane PN, called DM-nets. It can modify
dynamically its own structure by rewriting rules
that determine structural dynamic changes of its
components within P systems.

Labeled Extended Petri nets

In this section, we present a variant of PN called
labeled extended PN. Let L be a set of
labels TP LLL ∪= , ∅=∩ TP LL . Each place ip
labeled Pi Lpl ∈)(has a local state and the
transition tj being an action is labeled Tj Ltl ∈)(.
Labeled PN is a structure Γ = < P, T, Pre, Post,
Test, Inh, G, Pri, Kp, l >, where: P is the finite
set of places and T is a finite set of transitions so
that ∅=∩TP . In the graphical representation,
the place is drawn as a circle and the transition
is drawn as a black bar; the Pre, Test and

++ →×× ININTPInh P ||: is respectively a
forward flow, test and inhibition functions and

++ →×× ININPTPost P ||: is a backward flow
function in the multi-sets of P, which define the

303

set of arcs A and describes the marking-
dependent cardinality of arcs that connect
transitions and places. The directed arcs, Pre
and Post, are drawn as single arrows. The
inhibitory arcs, Inh, are drawn with a small
circle at the end, and the test arcs, Test, are
drawn as dotted single arrows. It does not
consume the content of the source place. By
default, the cardinality value of arcs is 1;

→× +
||: PINTG {True, False} is the guard

function of transitions. For t∈T, a guard function
g(t, M) is evaluated in each marking and if it is
evaluated to True, the transition t is enabled,
otherwise t is disabled (the default value is
True); Pri: ++ →× ININT P || defines the priority
functions for the firing of each transition and
maps transitions into natural numbers

+IN
representing their priority level. The enabling of
a transition with higher priority disables all the
lower priority transitions; +→ INPK p : is the
capacity of places, being by default of infinite
value; the LPTl →∪: , is a labeling function
that assigns a label to transitions and places. In
this way, transition names are mapped into
action names so that α==)()(kj tltl where

kj tt ≠ and β==)()(ni plpl where ni pp ≠ .
A marked labeled extended PN net is a pair N =
<Γ , M0 >, where Γ is a labeled PN structure and
M0 is the initial marking of the net. +→ INPM :
is the current marking of the net which is
described by a vector-column

),0,(PpmpmM iiii ∈∀≥= , where ii pm is
the number of tokens im in place ip . M is the
state of net that assigns to each place tokens
represented by black dots.
Details concerning the enabling and firing rules,
and the evolution of N = <Γ , M0 > can be found
in [2] as they require a great deal of space.

Descriptive expressions of Petri nets

Due to the space restrictions, we will give only a
brief overview to this topic and refer the reader
to [2, 3] and the references therein. In the
following, because of abuse of notation, labels
and names of nodes of the PN are the same.

We use the concept of a basic descriptive
element (bDE) for a basic PN (bPN) introduced
in [2] as the following:
 k

k

j

j tiiiit WWpmbDE αα |],[| 0 −+= . (1)

 The translation of this bPN described by (1) is
shown in figure 1a, where respectively ij pt •=

is input transition (action type jα) and •= ik pt is
the output transition (action type kα) of

place Ppi ∈ with the 0
im initial marking, and

respectively the flow type relation functions
),(Pr iji pteW =+ and),(kii tpPostW =− ,

which return the multiplicity of input and output
arcs of the discrete place Ppi ∈ . The derivative
elements of bDE are for 0, =∅= −•

ii Wp

is][| 0
iiit Wpmj

j

α with final place ip of jt and for

0, =∅= +•
ii Wp is k

ktiii Wpm α|0 with entry
place ip of kt (see figure 1b). If the initial
marking 0

im of place ip is zero tokens we can
omit 00 =im in bDE. By default, if the type of
action α is not mentioned this one matches the
name of transition t. From a bDE we can build
more complex DE of PN components by using
composition operations.
 Also, by default, if 1== −+

ii WW , we present
bDE and it derivatives as following:

 k

k

j

j tiit pm αα || 0 , iit pmj

j

0| α or k

ktii pm α|0 (2)

Figure 1. Translation in bHN (a) of bDE and
(b) its derivatives.

A descriptive expression (DE) of a labeled PN is
either bDE or a composition of DE a N:
 DE :: = bDE | DE∗DE | oDE ,
where ∗ is any binary composition operation
and o is any unary descriptive operation.

304

Descriptive Compositional Operations. In the
following, by default the labels of N are encoded
in the name of the transitions and places. The
composition operations are reflected at the level
of the DE components of N models by fusion of
places, fusion of transitions with same type and
same name (label) or sharing of subnets.
Place-Sequential Operation. This binary opera-
tion, denoted by the “ | ” sequential operator,
determines the logic of an interaction between
two local states ip (pre-condition) and kp (post-
condition) by jt action, which are in precedence
and succeeding (causality-consequence) relation
relative to this action. Thus, the expression:
][|][1 00

kkktiii WpmWpmDE j

j

α=

][|][00
iiitkkk WpmWpm j

j

α≠ (3)
means the fact that the specified conditions
(local state) associated with place-symbol ip are
always satisfied by means of the action jt before
the occurrence of the conditions associated with
place-symbol kp . Also, the PN modeling of the
iteration operation is obtained by the fusion of
head (entry) place with the tail (final) place that
have the same name (closing operation) in DE
which describes this net. The self-loop of N2 net
described by:

][|][2 0
iitiii WpWpmDE j

j

α=
j

jtiii Wpm α|][~0= (4)

and represents the test operator “~”, i.e. test arc.
Inhibition Operation. This unary operation is
represented by inhibitory operator “ – “

(represented by place-symbol with overbar).
j

jtiii WpmDE α|][3 0= describes the inhibitor arc

in N models with a weight function
),(jii tpInhW = .

Synchronization Operation. This binary opera-
tion, represented by “• ” or “∧ ” join operator,
describes the rendez-vous synchronization (by
transition jt) of two or more conditions
represented respectively by symbol-place

ji tp •∈ , ni ,...1= , i.e. It indicates that all
preceding conditions of occurrence actions must
have been completed.

Split Operation. This binary operation,
represented by the “ ◊ ” or “(◊)” split or fork
operators, describes, determines the causal
relations between activity tj and its post-
conditions: after completion of the preceding
action of tj concomitantly, several other post-
condition can occur in parallel.
Competing Parallelism Operation. This
compositional binary operation is represented by
the “∨ ” competing parallelism operator, and it
can be applied over NA with DEA = A and NB
with DEB = B or internally into resulting NR with
DER = R, between the places of a single NR
where the symbol-places with the same name
are respectively fused. We can represent the
resulting DER = BAR ∨= as a set of ordered
pairs of places with the same name to be fused,
with the first element belonging to A and the
second to B. The fused places will inherit the
arcs of the place in A and B.
Precedence Relations between the Operations.
We introduce the following precedence relation
between the compositional operations in the DE:
a) the evaluation of operations in DE are applied
left-to-right; b) an unary operation binds
stronger than a binary one; c) the “ • ”operation
is superior to ”/” and “ ◊ ” is superior to ”∨ ” .
Further details on definitions, enabling and
firing rules, and evolution for of N can be found
in [3] as they require a great deal of space.

Dynamic Rewriting Petri Nets

In this section we introduce the model of
descriptive dynamic net rewriting PN system.
Let YX ρ be a binary relation. The domain of ρ
is the Dom(ρ) = Yρ and the codomain of ρ is
the Cod(ρ) = ρX . Let A= < Pre, Post, Test, Inh
> be a set of arcs that belong to net Γ .
Definition 1. A descriptive dynamic rewriting
PN system is a structure:

>=< MGGRRN rtr ,,,, φΓ , where Γ = < P,
T, Pre, Post, Test, Inh, G, Pri, Kp, l >;

}...,,{ 1 krrR = is a finite set of rewriting rules
about the runtime structural modification of net
so that ∅=∩∩ RTP .

305

In the graphical representation, the rewriting
rule is drawn as two embedded empty
rectangles. We let RTE ∪= denote the set of
events of the net; },{: RTE →φ is the function
that indicates for every rewriting rule the type of
event can occur; →× +

||: P
tr INRG {True,False}

is the transition rule guard function associated
with Rr ∈ , and →× +

||: P
r INRG {True, False}

is the rewriting rule guard function defined for
each rule of Rr ∈ , respectively. For Rr∈∀ ,
the trtr GMg ∈)(and rr GMg ∈)(will be evaluated
in each marking and if they are evaluated to
True, the rewriting rule r is enabled, otherwise it
is disabled. Default value of trtr GMg ∈)(is True
and for rr GMg ∈)(is False). Let >=< MRRN ,Γ
and >=< rtr GGRR ,,, φΓΓ be represented by
the descriptive expression DERГ and DERN,
respectively. A dynamic rewriting structure
modifying the rule Rr∈ of RN is a map

WL DEDEr >: , where the codomain of the
rewriting operator, > , is a fixed descriptive
expression LDE of a subnet LRN of current net
RN, where RNRNL ⊆ with PPL ⊆ , EEL ⊆ and
set of arcs AAL ⊆ and the domain of > is a
descriptive expression WDE of a new wRN
subnet with PPw ⊆ , EEw ⊆ and set of arcs WA .
The rewriting operator, > , represents a binary
operation which produces a structure change in
DERN of the RN net by replacing (rewriting) the
fixed current LDE of the subnet LRN
(LDE and LRN are dissolved) by the new WDE of
subnet WRN that now belongs to the new
modified resulting NRDE ′ of the net

WL RNRNNRNR ∪=′)\(with WL PPPP ∪=′)\(
and WL EEEE ∪=′)\(, WL AAAA +−=′)(where
the meaning of \ (∪) is operation of removing
(adding) LRN from (WRN to) net RN. In this new
net NR ′ , obtained by the execution of the
enabled rewriting rule Rr∈ , the places and
events with the same attributes which belong
to NR ′ are fused. By default, the rewriting rules

∅>LDEr : or WDEr >∅: describe the rewriting
rule which maintains)\(LRNRNNR =′ or

)(WRNRNNR ∪=′ . A state of a RN net is the pair
(MR ,Γ), where ΓR is the configuration of the
net together with a current marking M. Also, the
pair (00 , MRΓ) with PP ⊆0 , EE ⊆0 and marking
M0 is called the initial state of the net.
Enabling and Firing of Events. The enabling of
events depends on the marking of all places. We
say that a transition jt of the event je is enabled
in current marking M if the following enabling
condition),(Mtec j is verified:

&)),(Pr((),(jii
tp

j tpemMtec
ji

≥∧=
•∈∀

<∧
∈∀

k
tp

m
jk

(
o

&)),(jk tpInh &)),((
* jll
tp

tpTestm
jl

≥∧
∈∀

&)),()((jnnp
tp

tpPostmK
n

jn

≥−∧
•∈∀

)),(Mtg j (5)

The rewriting rule Rrj ∈ is enabled in current
marking M if the following enabling condition

),(Mrec jtr is verified:

&)),(Pr((),(jii
rp

jtr rpemMrec
ji

≥∧=
•∈∀

<∧
∈∀

k
rp

m
jk

(
o

&)),(jk rpInh &)),((
* jll
rp

rpTestm
jl

≥∧
∈∀

&)),()((jnnp
rp

rpPostmK
n

jn

≥−∧
•∈∀

)),(Mrg jtr (6)

Let the T(M) and R(M), ∅=∩)()(MRMT , be
the set of enabled transitions and rewriting rules
in current marking M, respectively. Let
the)()()(MRMTME ∪= , be the set of enabled
events in a current marking M. The event

)(MEe j ∈ fires if no other event)(MEek ∈
with higher priority has been enabled. Hence,
for je event if

))),(()()((FalseMrgrt jtrjjjj =∧=∨= φφ then the
firing of the transition)(MTt j ∈ or of the
rewriting rule)(MRrj ∈ changes only the
current marking:

),(),(MRMR je ′⎯→⎯ ΓΓ ΓΓ RR =⇔ (and the
MeM j ′>[in ΓR)). Also, for the event je , if

))),(()((TrueMrgr jrjj =∧=φ then the event je
occurs at firing of the rewriting rule jr and it
changes the configuration and marking of the

306

current net, so that:),(),(MRMR jr ′′⎯→⎯ ΓΓ ,
MrM j ′>[).

The accessible state graph of a net
><= MRRN ,Γ is the labeled directed graph

whose nodes are states and whose arcs, which
are labeled with events or rewriting rules of
RN , are of two kinds: a) firing of an enabled
event)(MEe j ∈ : arcs from state),(MRΓ to
state (MR ′,Γ) labeled with event je , so that
this event can fire in the configuration ΓR at
marking M and leads to a new marking

⇔′′⎯→⎯′),(),(: MRMRM je ΓΓ (ΓΓ ′=RR and
[MeM j ′>[in ΓR); b) change configuration:
arcs from state),(MRΓ to state(MRR ′′,Γ)
labeled with the rewriting rule Rrj ∈ ,

:jr (LL MR ,Γ)> (WW MR ,Γ) which represent the
change configuration of current RN net:

),(),(MRMR jr ′′⎯→⎯ ΓΓ with MrM j ′>[.

a)

b)

Figure 2: Translation: a) 1ΓRDE in RN1 and
b) 2ΓRDE in RN2.

Let we consider the RN1 net, given by the
following descriptive expression:

1211 1
| ΓΓ RrR EDppDE ′∨=

)(|||)(51343521 21
ppppppED tttR ◊⋅=′ Γ (7)

)1,5(510 ppM = , 211 : ΓΓ RR DEDEr >
)0(&)3(),(511 === mmMrgr

Also, for the rewriting rule jr is required to
identify if LRN net belongs to the ΓR . The firing

of enabled events or rewriting rules modify the
current marking and/or modify the structure and
the current marking of RN1 in RN2 given by:

2212 1
| ΓΓ RtR EDppDE ′∨= ,

))(|||(||)(615543622 25432
ppppppppED rttttR ◊∨⋅=′Γ ,

12
1

12 : ΓΓ RR DEDErr >−= ,)1,3,1(321 pppM = ,
)1(&)4(),(512 === mmMrgr (8)

The translation of expression (7) 1ΓRDE in RN1
and expression (8) 2ΓRDE in RN2 is shown in
figure 2a and figure 2b, respectively.

Dynamic Rewriting Timed Petri Nets

Systems are described in timed PN (TPN) as
interactions of components that can perform a
set of activities associated with events. An event
e = (θα ,), where E∈α is the type of an
activity (action name), and θ is the firing delay.
Definition 2. A descriptive dynamic rewriting
TPN is a RTN = < RN, θ >, where:
• >=< MGGRRN rtr ,,,, φΓ , Γ = < P, T,

Pre, Post, Test, Inh, G, Pri, Kp, l > with set of
events τEEE ∪= 0 which can be partitioned into
a set 0E of immediate events and a set τE of
timed events, so that ∅=∩ τEE0 , Pri(E0) >
Pri(τE). The immediate event is drawn as a
thin bar and the timed event is drawn as a black
rectangle for transitions and two embedded
empty rectangles for rewriting rules;
• ++ →× IRINE P||:θ is the weight function

that maps events onto real numbers +IR (delays
or weight speeds). It can be dependent of the
marking. The delays)(),(MdMe kk =θ defines
the duration of timed events.
If several timed events)(MEej∈ are
concurrently enabled in current marking for the

}0),(Pr:{ >∈∀=∈•
jijij epeEepe , either in

competition or independently, we assume that a
race competition condition exists between them.
The evolution of the model will determine
whether the other timed events have been
aborted or simply interrupted by the resulting
state change. The)(),(MwMe jj =θ is the

307

weight speed of immediate events ej∈E0. If
several enabled immediate events are scheduled
to fire at the same time in vanishing marking M
with the weight speeds, then the probability of
the enabled immediate event ej to fire is:

 =)(Mq j ∑
•∈))&((

),(/),(
il pMEe

lj MewMew (9)

 where E(M) is the set of enabled events in M.
An immediate event has a zero firing time.

P Systems and Timed Membrane Petri Nets

Here we give a brief review of P systems and its
encoding with DM-nets. A full guide for P
systems can be referred to [4]. The main
components of P systems are membrane
structures consisting of hierarchically embedded
membranes in the outermost skin membrane.
Each membrane encloses a region containing a
multiset of objects and possibly other
membranes.
In general, a basic evolution-communication P
system with active membranes (of degree n ≥ 0)
is PΓ =(O, H, μ ,Ω , (ρ ,π)), where: O is the
alphabet of objects; H is a finite set of labels for
membranes; μ is a membrane structure
consisting of n membranes labeled with
elements h = 0,1,…, n-1 in H; Ω is the
configuration, that is mapping from membrane h
of PΓ (nodes inμ) to multisets of
objects Ωω ∈h , }{ , ihh ωω = , i=0,1,…, ||O present
in the corresponding region of membrane h, then
the system is created; ρ andπ is respectively
the set of rules }{ , jhh ρρ = and its priorities

}{ , jhh ππ = , j=0,1,…, k. The active membranes
can be of two forms of rules jh,ρ : a) the object
rules (OR), i.e., evolving and communication
rules concerning the objects; b) the membranes
rules (MR), i.e., the rewriting rules about the
structural modification of membranes.
The structure of a membrane is:

hlliih]][,...,][,[ω , and each object rule ρρ ∈jh,
has a form: },{:, δδωωωωρ ¬×→

linoutherejh ,
here l belongs to the label set of its sub-
membranes, and hereω , outω , and

linω denote the

multiset of objects which will be kept in this
membrane, send out of this membrane, and send
into its sub-membrane labeled by l, respectively.
The δ denotes the dissolving rule.
Here we present the DM-nets for encoding of P
systems mentioned above into descriptive
dynamic rewriting TPN as a RTN. The basis for
DM-nets is a membrane RTN that is a DE net
structure comprising: places and its capacity,
transitions and its priority, and guard function,
weighed directed arcs from places to transitions
and vice-versa, weighed inhibitory and test arcs.
Consider the P system PΓ . The encoding of PΓ
into DM-net is decomposed into two separate
steps. First, for every membrane [h]h we
associate: to each object hih ωω ∈, one place [h

ihi pm ,
0]h with the initial marking 0

, ihm , and to
each rule ∈jh,ρ ρ one event [h jhe ,]h, that acts
on the this membrane. Second, for every
membrane [h]h we define the DEh of RTNh that
corresponds to the initial configuration of the P
system PΓ as [h DEh]h .
Let u , v and u′ , v′be a multiset of objects.
Definition 3. The DM-nets of degree n ≥ 0, is
a construct hhh

n
h DEDM][01

0
−
=∨= , where:

• The hhhhjh vu]][[:, ′′′ →ρ evolving object
rule with multiset of objects u , v which will be
kept in ''][hh is encoded as:

 hhvhjhtuhhh pp]]|[[,,, ′′ ;
• The antiport rule, that realizes a
synchronization of object c with the objects of
the type hhhhhhhhih uvvu]][[]][[:, ′′′′′ ′′→ρ , is
encoded as:
 hhvhuhihtchvhuhhh ppppp]])(|)~([[,,,,,, ′′′′′′′′′′ ◊⋅⋅ .
Also, the hhhhhhhhkh uu]][[]][[:, ′′′′′ ′→ρ sym-
port rule, that moves objects from inside to
outside a membrane, or vice-versa is encoded
as:

hhuhkhtchuhhh ppp]]|)~([[,,,, ′′′′′′′ ⋅ .
Because the configuration means both a
membrane structure and the associated multisets
of objects, we need the rewriting rules for

308

processing membranes and multisets of objects
as: MR = {mr0, mr1, mr2, mr3, mr4, mr5, mr6}.
The above membrane rewriting rules (realized
by the rewriting events in DE’s) are defined as:
• mr0: Change rewriting rule, that changes, in
run-time, the current structure and the multisets
of objects of membrane h, encoded by
descriptive expression hDE ′ and its marking

hM ′ in a new structure hED ′′ with new marking

hM ′′ : hhhhhhhhhh EDDE]])[[]][[′′′′′′ ′> ;
• mr1: Dissolve rewriting rule says that the
membrane h′ is dissolved and the objects as

hM ′ and sub-membranes of membrane h′
belong now to its parent membrane h. The skin
membrane cannot be dissolved:
 hhhhhhhhh EDDEDE][]][[′′′′ > , hhh MMM ′+=′ ;
 • mr2: Create rewriting rule, says that the new
membrane h′with hED ′′′ and hM ′′′ is created in
membrane h, the rest remain in the parent
membrane h:

hhhhhhhhh EDEDDE]][[][′′′ ′′′> , hhh MMM ′′′+′= ;
• mr3: Divide rewriting rule says that the
objects and sub-membranes are reproduced and
added into membrane h′ and into h ′′ ,
respectively:

hhhhhhh DEDE ′′][[][> hhhh DE]][′′′′ ;
• mr4: Merge rewriting rule says that the
objects of membrane h′ and h ′′ are added to a
new membrane h is:
 hhhhhhhhh EDED []][][[>′′′′′′′′′ ′′′ hhh EDED]′′′ ′′∨′
with new marking hhh MMM =′′+′ ′′′ ;
• mr5: Separate rewriting rule is the counterpart
of the Merge rewriting rule and is done by a:

hhhhhh EDED ′′′′ ′′∨′ [[][> hhhhhh EDED]][] ′′′′′′′′ ′′′
with meaning that the content of membrane h is
split into two membranes, with labels h′ and h ′′ ,
and the new marking is hhh MMM ′′′+′= ;
• mr6: Move rewriting rule where a membrane
h ′′ can be moved out or moved into a
membrane h′ as a whole is done by a:

hhhhhhhhh DEDE []]][[[>′′′′′′′′′

hhhhhhh DEDE]][][′′′′′′′′′ or

hhhhhhhhhh DEDE ′′′′′′′′′′ [[]][][[>
hhhhhh DEDE]]][′′′′′′′′

with their marking, respectively.
Thus, using the DM-nets facilitates a compact
and flexible specification and verification of
parallel computing models.
In order to describe the details of this approach,
we present a simple but illustrative example of
encoding PΓ into DM-net.
Consider the following P system 1PΓ of degree 3:

012210],],][,[,[ab=μ , },,,{ dcbaO = ,
}{0 b=ω , }{1 a=ω , 21,00 :{ inddc →= ρρ ,

},: 12,0 inbb →ρ }{ 2,01,00 πππ >= , (10)

21,11 :{ inouthere dcba →= ρρ , },:2,1 δρ outab →
},:2,1 δρ outab → ∅=1π , ,2 ∅=ω ∅=2π .

The encoding solution for the initial
configuration of 1PΓ described by (10) is given
by the DM1-net, where every object can be
represented as a place labeled as the name of
objects: aplpl ==)()(1,11,0 , bplpl ==)()(2,12,0 ,

cpl =)(3,0 , dplpl ==)()(4,01,2 .
The number of tokens in this place denotes the
number of occurrences of this object.
Every object- rule can be represented by an
event type transition. For example, in membrane
0, the rule 21,0 : inddc →ρ , can be described by a
transition 1,0t . Because two copies of object d
are send to membrane 2, the weight of the arc

),(1,21,0 pt is 2, which denotes that whenever the
rule 1,0ρ is performed, one copy of object c will
be removed in membrane 0 and two copies of
object d will be sent to membrane 2.
Up to now, all objects and rules of 1PΓ are
encoded in DM1-net as following:

012221100]]][[[1 DEDEDEDM =
]2[||1 1,21,03,01,22,02,01,00 pppppDE tt ∨∨=

)|(|1 1,21,01,12,13,01,11,11 pppppDE rt ◊◊= (11)

2,11,21,22 | ppDE t= ,)(Pr 1,0ti)>)(Pr 2,0ti

2101 DEDEDEDE ∨∨=
The dissolving rule δ=1mr is represented in
DM1-net by the following mr1 rule:

11:1,1 MDDMr ′> , 000][1 EDMD ′=′ (12)
,2|]2[2|1 2,04,03,01,00 2,01,0

ppppED tt∨=′

309

))1,2,((),(1,22,13,0
11

1,1 pppMMrgr DEDE ==

where 1DEM is the current marking of 1DM .
The translation of P system 1PΓ into DM1-net
described by (11) and DM’1-net described by
(12) is shown in figure 3 and figure 4,
respectively.

Figure 3. Translation of 1DE into DM1-net

for 1PΓ .

Figure 4: Translation of 1ED ′ into 1MD ′ -net

for 1PΓ .

The reachability graph of DM1-net in the listing
form is:

1
111,12,0

1
0 [)1,1(DEDE MUppM >= ;

1
221,22,13,0

1
1 [)1,2,1(EDDE MUpppM ′>= ;

1
334,02,01,0

1
2 [)2,2,1(EDED MUpppM ′′ >= ;

1
444,02,01,0

1
3 [)1,3,1(EDED MUpppM ′′ >= ;

[)4,1(2,01,0
1

4 ppM ED =′ ,
where },{ 1,12,01 ttU = ; },,{ 1,21,11,02 trtU = ;

}{ 3,043 tUU == .

Conclusions

In this paper we have proposed an approach to the
performance modeling of the behaviour of P
systems through a class of Petri nets, called
Descriptive Membrane Timed PN (DM-nets).

Based upon the introduction of a set of descriptive
composition operation and rewriting rules attached
to transitions for the creation of dynamic rewriting
TPN, the membrane structure can be successfully
encoded as a timed membrane Petri nets models
which permits the description of the state based
process, in run-time structure change of P systems,
and verification of its behavioral properties.
An important feature characterizing the proposed
basic DM-net model is its robustness, in the sense
of being easily extendable to handle salient
features of more sophisticated active membrane
systems.
We are currently developing a visual simulator
software with a friendly interface for verifying and
performance evaluation of descriptive rewriting
TPN models and DM-nets.

References

[1] Ajmone-Marsan, M., Balbo G., Conte G.,
Donatelli S., and Francheschinis G. (1995)
Modeling with Generalized Stochastic Petri Nets,
In Parallel Computing, New York: Wiley.
[2] Guţuleac, E. (2004) Descriptive Compositio-
nal Construction of GSPN Models for
Performance Evaluation of Computer Systems, In
Proc. of the 8-th International Symposium
SACCS04, 22-23 October, Iasi, România, CD.
[3] Guţuleac, E., Mocanu M. (2005) Descriptive
Dynamic Rewriting GSPN-based Performance
Modeling of Computer Systems, In Proc. of the
15th Intern. Conf. CSCS15, 25-27 May 2005,
Bucureşti, România, pp. 656-661.
[4] Kleijn J., Koutny M., Rozenberg G. (2005)
Towards a Petri Net Semantics for Membrane
Systems. In Proceedings of the WMC6 2005, July
18-21, Wien, Austria, pp. 439-459.
[5] Păun, Gh. (2002) Membrane Computing. An
Introduction, Natural computing Series. ed. G.
Rozenberg, Th. Back, A.E. EibenJ.N. Kok, H.P.
Spaink, Leiden Center for Natural Computing,
Springer–Verlag, Berlin, p. 420.
[6] Qi Z., You J., and Mao H. (2003) P Systems
and Petri Nets, Proceedings WMC 2003, Lecture
Notes in Computer Science, vol. 2933, Springer-
Verlag, Berlin, pp. 387-403.

View publication statsView publication stats

https://www.researchgate.net/publication/229036654

