S

8™ International Conference on DEVELOPMENT AND APPLICATION SYSTEMS
Suceava, Romania, May 25-27,2006

DESCRIPTIVE TIMED MEMBRANE PETRI NETS

FOR PERFORMANCE MODELLING

OF PARALLEL AND DISTRIBUTED COMPUTING

Emilian GUTULEAC', Ton BALMUS?, Iurie TURCANU?, Emilia GUTULEAC"
Computer Science Department, Technical University of Moldova
Bul. Stefan cel Mare nr. 168, MD-2004 Chisinau, Republic of Moldova

Iegutuleac@mail. utm.md

Abstract. In order to capture the compartmentalization and the behaviour of membrane systems for
performance modelling of parallel and distributed computing, we introduce the Descriptive Timed Membrane
Petri Nets (DM-nets) that can modify, in run-time, their own structure by rewriting some of their descriptive
expression components. Furthermore, this descriptive approach facilitates the understanding of complex models
and their component-based construction as well as the application of modern computer engineering concepts.
Keywords: membrane systems, parallel computing, performance modeling, Petri nets.

Introduction

Recent technological achievements require
advances beyond the existing computational
models in order to be used -effectively.
Pragmatic aspects of current and future
computer systems will be modelled so that
realistic estimations of efficiency can be given
for algorithms in these new settings.

Petri nets (PN) are very popular formalism for
the analysis and representation of parallel and
distributed computing in concurrent systems,
that has drawn much attention to modeling and
verification of this type of systems [1, 3].
P-systems, also referred to as membrane
systems, are a class of parallel and distributed
computing models inspired from the structure
and the functioning of living cells [5].

The interest of relating P systems with the PN
model of computation leads to several important
results on simulation and decidability issues.
Some efforts have been made to simulate P
systems with Petri nets [4, 6] in order to verify
the many useful behavioral properties such as
reachability, boundedness, liveness,
terminating, deadlock-free, etc.

In this paper we propose a new approach to
define the components of continuous-time P
systems [5] through components of Descriptive
Petri Nets (DPN) using descriptive expressions

302

(DE) [2]. The DE formalism is used for
analytical representation and compositional
construction of PN models.

In order to model specific rules of P Systems
within the framework of the Descriptive
Rewriting Timed PN (RTN) [3], we introduce a
new extension of RTN - the Descriptive Timed
Membrane PN, called DM-nets. It can modify
dynamically its own structure by rewriting rules
that determine structural dynamic changes of its
components within P systems.

Labeled Extended Petri nets

In this section, we present a variant of PN called
labeled extended PN. LetZ be a set of
labelsL =L,UL,, L,nL,=. Each place p,
labeled /(p,)e L, has a local state and the
transition #; being an action is labeled /(¢,) e L, .

Labeled PN is a structure 7" = < P, T, Pre, Post,
Test, Inh, G, Pri, K,, [>, where: P is the finite
set of places and T is a finite set of transitions so
that Pn7 =2 . In the graphical representation,

the place is drawn as a circle and the transition
is drawn as a black bar; the Pre, Test and

Inh:PxTxIN'"' >IN, is a
forward flow, test and inhibition functions and
Post:Tx PxIN'"' >IN is a backward flow
function in the multi-sets of P, which define the

respectively

set of arcs 4 and describes the marking-
dependent cardinality of arcs that connect
transitions and places. The directed arcs, Pre
and Post, are drawn as single arrows. The
inhibitory arcs, Inh, are drawn with a small
circle at the end, and the test arcs, Test, are
drawn as dotted single arrows. It does not
consume the content of the source place. By
default, the cardinality value of arcs is 1;
G :TxIN"' — {True, False} is the guard

function of transitions. For e 7, a guard function
g(t, M) is evaluated in each marking and if it is
evaluated to True, the transition ¢ is enabled,
otherwise ¢ is disabled (the default value is
True); Pri:TxIN'!"' — IN_ defines the priority

functions for the firing of each transition and
maps transitions into natural numberszy

representing their priority level. The enabling of
a transition with higher priority disables all the
lower priority transitions; K ,:P— N, is the

capacity of places, being by default of infinite
value; the /:TUP— L , is a labeling function

that assigns a label to transitions and places. In
this way, transition names are mapped into
action names so that I(s;)=I(s,)=a where

t;#1, and I(p)=I(p,)=p wWherep,#p,.

A marked labeled extended PN net is a pair N =
<TI, My >, where I is a labeled PN structure and
M, is the initial marking of the net. M : P —> IN,
is the current marking of the net which is
described by a vector-column
M=(m;,p,, m, 20,V p, e P), where m,p, is
the number of tokens m, in place p,. M is the
state of net that assigns to each place tokens
represented by black dots.

Details concerning the enabling and firing rules,

and the evolution of N = <71, My > can be found
in [2] as they require a great deal of space.

Descriptive expressions of Petri nets

Due to the space restrictions, we will give only a
brief overview to this topic and refer the reader
to [2, 3] and the references therein. In the
following, because of abuse of notation, labels
and names of nodes of the PN are the same.

303

We use the concept of a basic descriptive
element (bDE) for a basic PN (bPN) introduced
in [2] as the following:

bDE=|{ m!p, W, W/]|

47

(1)

The translation of this bPN described by (1) is
shown in figure 1a, where respectively ¢, = “p,

t *

is input transition (action type ;) and ¢, = p; is
the output transition (action type «,) of
place p, e P with the m ZO initial marking, and
respectively the flow type relation functions
W' =Pre(t;,p,) W, =Post(p,,t,),
which return the multiplicity of input and output
arcs of the discrete place p, € P. The derivative

of bDE forp’ =0, W= =0

and

elements are
is |7 m/ p, [W;] with final place p, of ¢, and for

‘p, =9, VV:’+ =0
place p, of t, (see figure 1lb). If the initial

ism’p, W, |¢ with entry

marking m! of place p, is zero tokens we can

omit m, =0in HDE. By default, if the type of
action « 1s not mentioned this one matches the

name of transition 7. From a bDE we can build
more complex DE of PN components by using
composition operations.

Also, by default, if W," = W~ =1, we present
bDE and it derivatives as following:

Ay
15

2)

mlp, 1o Y, or mlp, |
I ‘© i
t ' 1,
%j W D (a) Di w- gy
0 & ——i
J W =0 W =0 k
(b)
Figure 1. Translation in bHN (a) of bDE and
(b) its derivatives.

W W k

A descriptive expression (DE) of a labeled PN is
either bDDE or a composition of DE a N:

DE ::=bDE | DExDE| o DE ,
where * is any binary composition operation
and o is any unary descriptive operation.

Descriptive Compositional Operations. In the
following, by default the labels of N are encoded
in the name of the transitions and places. The
composition operations are reflected at the level
of the DE components of N models by fusion of
places, fusion of transitions with same type and
same name (label) or sharing of subnets.

Place-Sequential Operation. This binary opera-
tion, denoted by the “ | ” sequential operator,
determines the logic of an interaction between
two local states p, (pre-condition) and p, (post-

condition) by ¢, action, which are in precedence

and succeeding (causality-consequence) relation
relative to this action. Thus, the expression:

DEI:mzppi [VVi]|Z/mI(c)pk A
#m, p, (W,]| z.jmiopi] (3)

means the fact that the specified conditions
(local state) associated with place-symbol p, are

always satisfied by means of the action ¢, before

the occurrence of the conditions associated with
place-symbol p, . Also, the PN modeling of the

iteration operation is obtained by the fusion of
head (entry) place with the tail (final) place that
have the same name (closing operation) in DE
which describes this net. The self-loop of N2 net
described by:

DE2=m/p, [W,]

1

A AR AUA T

G
~

and represents the test operator “~, i.e. test arc.
Inhibition Operation. This unary operation is
represented by inhibitory operator < ~
(represented by place-symbol with overbar).

DE3=mp, [W,]|¥ describes the inhibitor arc

in N models with function

W, =Inh(p,, tj) .

Synchronization Operation. This binary opera-
tion, represented by “e” or “A” join operator,
describes the rendez-vous synchronization (by
transition ¢,) of two or more conditions

a weight

represented respectively by symbol-place
pi €t i=L..n ie It indicates that all

preceding conditions of occurrence actions must
have been completed.

304

Split Operation. This binary operation,
represented by the “0” or “(0)” split or fork
operators, describes, determines the causal
relations between activity ¢ and its post-
conditions: after completion of the preceding
action of f# concomitantly, several other post-
condition can occur in parallel.

Competing Parallelism Operation. This
compositional binary operation is represented by
the “v ” competing parallelism operator, and it
can be applied over Ny with DE, = 4 and Np
with DEg = B or internally into resulting Nz with
DEr = R, between the places of a single Ng
where the symbol-places with the same name
are respectively fused. We can represent the
resulting DEr = R=4vB as a set of ordered

i

pairs of places with the same name to be fused,
with the first element belonging to 4 and the
second to B. The fused places will inherit the
arcs of the place in 4 and B.

Precedence Relations between the Operations.
We introduce the following precedence relation
between the compositional operations in the DE:
a) the evaluation of operations in DE are applied
left-to-right; b) an wunary operation binds
stronger than a binary one; c) the “e”operation
1s superior to ”/” and “0” is superior to v
Further details on definitions, enabling and
firing rules, and evolution for of N can be found
in [3] as they require a great deal of space.

2

Dynamic Rewriting Petri Nets

In this section we introduce the model of
descriptive dynamic net rewriting PN system.
Let XpY be a binary relation. The domain of p
is the Dom(p) =pY and the codomain of p is
the Cod(p) =Xxp . Let A= < Pre, Post, Test, Inh

> be a set of arcs that belong to net 7.
Definition 1. A descriptive dynamic rewriting
PN system is a structure:

RN=<I, R,¢$.,G, G ,M>, where I'= < P,
T, Pre, Post, Test, Inh, G, Pri, K,, [>;
R=1{n,..r} is a finite set of rewriting rules

about the runtime structural modification of net
sothat PNTNR=.

In the graphical representation, the rewriting
rule is drawn as two embedded empty
rectangles. We let £ =T UR denote the set of
events of the net; ¢: E — {T, R} is the function

that indicates for every rewriting rule the type of
event can occur; G, : RxIN'"' — {True,False}
is the transition rule guard function associated
with reR, and G, : RxIN "' — {True, False}

is the rewriting rule guard function defined for
each rule of reR, respectively. ForVreR,
theg, (M) e G, and g (M) e G. will be evaluated

in each marking and if they are evaluated to
True, the rewriting rule r is enabled, otherwise it
is disabled. Default value of g, (M) e G, is True

and for g (M) eG, is False). Let RN=<RI", M >
and RI"=<TI", R,¢,G, G, > be represented by

the descriptive expression DErr and DEgy,
respectively. A dynamic rewriting structure
modifying the rule »reR of RN is a map
r:DE,>DE,, where the codomain of the

rewriting operator, >, is a fixed descriptive
expression DE, of a subnet RN, of current net
RN, where RN, c RN with P, ¢ P, E, c Eand
set of arcs 4, < A and the domain of > is a
descriptive expression DE, of a new RN,
subnet with P, ¢ P,E < E and set of arcs 4, .
The rewriting operator, > , represents a binary

operation which produces a structure change in
DERgy of the RN net by replacing (rewriting) the
fixed current DE, of the subnet RN,

(pE, andry, are dissolved) by the new DE,, of
subnet RN, that now belongs to the new
modified resulting pg,, of the
RN'=(RN\RN,)URN, with P'=(P\P,)UP,
and E'=(E\E,)VE,, A'=(4A-4,)+ A, where

net

the meaning of \ (L) is operation of removing
(adding) RN, from (RN, to) net RN. In this new
netRN', obtained by the execution of the
enabled rewriting rule reR, the places and
events with the same attributes which belong
to RN ' are fused. By default, the rewriting rules
r:DE, > or r:Jw>DE, describe the rewriting

rule which maintains RN'=(RN\RN,) oOr

305

RN'=(RN U RN,). A state of a RN net is the pair
(Rr,Mm), where RI" is the configuration of the
net together with a current marking M. Also, the
pair (RI;,,M,) withP, c P, E, c E and marking

M, is called the initial state of the net. |
Enabling and Firing of Events. The enabling of
events depends on the marking of all places. We
say that a transition ¢, of the event e, is enabled

in current marking M if the following enabling
condition ec(¢,, M) is verified:

ec(tf’M):(va-t (m, 2Pre(p,,t,) & Vpk/;“t/(mk <
Inh(p,,t,)& A (m, 2Test(p,,t,) &

Vp€ i
(5)

The rewriting rule r, € R is enabled in current

A (K, —m,) = Post(p,,t;)) & g(t;,M))

Vp”et7

marking M if the following enabling condition
ec, (r;, M) is verified:

A (m, <
Vpkeorl

e, (rM)=(_ A (m 2Pre(p.r,)&

Inh(p,,r) & A (m; >Test(p,,r;) &
Vper;

A (K, —m,) 2 Post(p,, 1) & g, (r;,M)) (6)
Pn €T}

Let the T(M) and R(M), TIM)NnR(M)=, be
the set of enabled transitions and rewriting rules

in current marking M, respectively. Let
the E(M)=T(M)UR(M), be the set of enabled

events in a current marking M. The event
e; € E(M)fires if no other event e, € E(M)

with higher priority has been enabled. Hence,
for e, event if

(@,=t,)v(¢=r)n(g,(r,M)=False)) then the
firing of the transition ¢, € T(M) or of the
rewriting rule r, € R(M) changes only the
current marking:

(R[, M)—“—(RI", M') < (RI" = RI" and the
Mle, >M" inRI")). Also, for the event e, if
(@=r,)~ (g.(r,,M)=True)) then the event e,
occurs at firing of the rewriting rule 7, and it

changes the configuration and marking of the

current net, so that:(RI", M)—2—>(RI"", M),
M[r, >M").

The accessible state graph of a net
RN=<RI,M > is the labeled directed graph

whose nodes are states and whose arcs, which
are labeled with events or rewriting rules of
RN , are of two kinds: a) firing of an enabled

event e, € E(M): arcs from state (RI",M) to
state (R/",M") labeled with event e, so that
this event can fire in the configuration R/ at
marking M and leads to a new marking
M':(RC,M)—~—>(RI",M"y< (RC=RI" and
[M[e,>M" in RI"); b) change configuration:
to state(R7I,RM')
rewriting rule

arcs from state (R, M)
labeled with the r, R,
r;: (R[,,M,)> (RI,, M,) which represent the
change configuration of current RN net:
(RI, M)—2—>(RI", M) with M[r, > M".

g1 M) = (m1=3)&(m5=0) _pepry
P : :

5
-

Figure 2: Translation: a) pg, in RN1 and
b) DE,.in RN2.

Let we consider the RN1 net, given by the
following descriptive expression:

DE; -, =p, |,

DE} 1 =(p, 'p5)|t1 Ps |t2 Pals (PO Pps)
M,=0Gp,,1ps), r:DE, > DE, -,
g, (rn,M)=(m, =3)&(m; =0)

P v DEg -,
(7

Also, for the rewriting rule r; is required to

identify if RN, net belongs to the R/". The firing

306

of enabled events or rewriting rules modify the
current marking and/or modify the structure and
the current marking of RN1 in RN2 given by:

DE -, = p, |z1 Py VDE,,,
DE}r, =(p, 'p6)|zz P3(|,3 Py |r4 Ps V|75 Ps |,2 (Pi0P6))>

7, =7’171 :DE,,, I>DER1-1,M =(p,.3p,.1p;),

g (r,M)=(m, =4) & (m; =1) (8)
The translation of expression (7) DE,, in RN1
and expression (8) DE,, in RN2 is shown in

figure 2a and figure 2b, respectively.
Dynamic Rewriting Timed Petri Nets

Systems are described in timed PN (TPN) as
interactions of components that can perform a
set of activities associated with events. An event
e = (a, 0), where aeE is the type of an

activity (action name), and @ is the firing delay.
Definition 2. A descriptive dynamic rewriting
TPN isa RTN = < RN, 6 >, where:
eRN=<I,R,$,G, G ,M>, '=<DP, T,
Pre, Post, Test, Inh, G, Pri, K,, | > with set of
events £=FE, U E_which can be partitioned into
a set E, of immediate events and a set E_of
timed events, so that £, NE_=O, Pri(Ey) >
Pri(E_). The immediate event is drawn as a

thin bar and the timed event is drawn as a black
rectangle for transitions and two embedded
empty rectangles for rewriting rules;

e 0:ExIN" —IR_is the weight function
that maps events onto real numbers IR, (delays

or weight speeds). It can be dependent of the
marking. The delays O(e,,M)=d, (M) defines

the duration of timed events.
If several timed events e,eE(M)are

concurrently enabled in current marking for the
e, €' p,={Ve, e E:Pre(p,,e;) >0}, either in

competition or independently, we assume that a
race competition condition exists between them.
The evolution of the model will determine
whether the other timed events have been
aborted or simply interrupted by the resulting
state change. The &(e,,M)=w,(M)is the

weight speed of immediate events eje Ey. If
several enabled immediate events are scheduled
to fire at the same time in vanishing marking M
with the weight speeds, then the probability of
the enabled immediate event e; to fire is:

q;,(M)= w(e;,M)/ Zw(e,,M)

e €(E(M)&"p;)

where E(M) is the set of enabled events in M.
An immediate event has a zero firing time. W

)

P Systems and Timed Membrane Petri Nets

Here we give a brief review of P systems and its
encoding with DM-nets. A full guide for P
systems can be referred to [4]. The main
components of P systems are membrane
structures consisting of hierarchically embedded
membranes in the outermost skin membrane.
Each membrane encloses a region containing a
multiset of objects and possibly other
membranes.

In general, a basic evolution-communication P
system with active membranes (of degree n > 0)
s rp=(0, H, u,Q, (p,n)), where: O is the
alphabet of objects; H is a finite set of labels for
membranes; 4 1S a membrane structure
consisting of » membranes labeled with
elements 4 0,1,..., n-1 in H, @ 1is the
configuration, that is mapping from membrane /
of 7P (nodes ing) to multisets of

objectsw, e 2, ®, ={w,,}, i=0,1,...,|O| present

in the corresponding region of membrane /, then
the system is created; p andis respectively

the set of rules p,={p, }and its priorities
Ty =47} s j=0,1,..., k. The active membranes
can be of two forms of rulesp, : a) the object

rules (OR), i.e., evolving and communication
rules concerning the objects; b) the membranes
rules (MR), 1i.e., the rewriting rules about the
structural modification of membranes.

The structure of a membrane is:
[, [1.1, 1,, and each object rule p, ;€ p

has a form: p, 10— o,,0,,, x{5,-5},
here / belongs to the label set of its sub-
membranes, and @,,,,®,,, and o, denote the

out >

307

multiset of objects which will be kept in this
membrane, send out of this membrane, and send
into its sub-membrane labeled by /, respectively.
The ¢ denotes the dissolving rule.

Here we present the DM-nets for encoding of P
systems mentioned above into descriptive
dynamic rewriting TPN as a RTN. The basis for
DM-nets is a membrane RTN that is a DE net
structure comprising: places and its capacity,
transitions and its priority, and guard function,
weighed directed arcs from places to transitions
and vice-versa, weighed inhibitory and test arcs.
Consider the P system 7P . The encoding of 7P
into DM-net is decomposed into two separate
steps. First, for every membrane [,], we
associate: to each object w,; € w, one place [,

m;p, 1n with the initial marking m,,, and to
each rule p, ;e pone event [, e,], that acts

on the this membrane. Second, for every
membrane [,], we define the DE), of RTN), that
corresponds to the initial configuration of the P
system 7P as [, DEj 5.

Let u,v and u’, v' be a multiset of objects.

Definition 3. The DM-nets of degree n > 0, 1is
a construct DM =v'~[, DE,], , where:

e The p, :[,[, u—v 1,1, evolving object
rule with multiset of objects u,v which will be
keptin [,] is encoded as:

Lol 2o by, P 1i 1

The antiport rule, that realizes a
synchronization of object ¢ with the objects of

the type p, :[ul,v 1,1, >0V 1,1, 18
encoded as:

[h [/1' (ph',u "Dy 'ﬁh"c) ‘th',,» (ph"u’oph', v’)]h’]h .
Also, the Pua-latt Ly 1w 1 =L L u' 1,1, sym-

port rule, that moves objects from inside to
outside a membrane, or vice-versa is encoded
as:

[h [h (ph',u 5hc) |z,,r,k Py v]h']h .
Because the configuration means both a

membrane structure and the associated multisets
of objects, we need the rewriting rules for

processing membranes and multisets of objects
as: MR = {mry, mry, mry, mry, mra, mrs, mre}.
The above membrane rewriting rules (realized
by the rewriting events in DE’s) are defined as:
e mry:. Change rewriting rule, that changes, in
run-time, the current structure and the multisets
of objects of membrane 4, encoded by
descriptive expression DE,, and its marking
M, in a new structure DE; with new marking
M :[,[,DE, 1, 1,>[, [, DE))], 1,;

o mry: Dissolve rewriting rule says that the
membrane /' is dissolved and the objects as
M, and sub-membranes of membrane A’
belong now to its parent membrane /4. The skin
membrane cannot be dissolved:

[/zDEh [/z' DE;;']h’]h > [h DE/;]/z > M/’; :Mh +Mh’;

e mry: Create rewriting rule, says that the new
membrane h’'with DE; and M, is created in

membrane /4, the rest remain in the parent
membrane /:

[, DE, 1,>[,DE, [, DE; 1, LM, =M, +M,,
o mry. Divide rewriting rule says that the
objects and sub-membranes are reproduced and
added into membrane %' and intoh”,
respectively:

[, DE, 1,>1, [, DE, 1, [, DE, 1,,;

o mry. Merge rewriting rule says that the
objects of membrane 4'and 4" are added to a
new membrane / is:

LI, DE; 1,1, DE. 1,),>[, DE, v DE/. |
with new marking M, + M, =M ;

h

h h
e mrs: Separate rewriting rule is the counterpart
of the Merge rewriting rule and is done by a:
[, DEjv DE}. 1, [, [, DE.1, [,.DE} 1],
with meaning that the content of membrane 4 is
split into two membranes, with labels A"and /",
and the new marking isM, = M| + M|, ;

o mre: Move rewriting rule where a membrane
h"can be moved out or moved into a
membrane /' as a whole is done by a:

[y L DE o [DE o 11 131, > [

[wDE, 1, [DE . 1,01, oOF

[,[, DE, 1, [.DE, 1.1, >[,[,
DE, [, DE, 1,1,

with their marking, respectively. []
Thus, using the DM-nets facilitates a compact
and flexible specification and verification of
parallel computing models.

In order to describe the details of this approach,
we present a simple but illustrative example of
encoding 7P into DM-net.

Consider the following P system 7,1 of degree 3:

H :[0 b, [1 a, [2]2:]1:]09 0= {aabacsd} 5
w, ={b}, o, ={a},p, ={p,,:c—>dd,,,
Poaribob, b, my={n,, >my,} (10)

Oul‘g}’
oV, 1 =D,0,=0, n,=0.
The encoding solution for the initial
configuration of 7P1 described by (10) is given
by the DM]I-net, where every object can be
represented as a place labeled as the name of
objects: I(p,)=l(p,,)=a, I(p,,)=l(p,,) =D,
l(po,s): c, l(pZ,]):l(p0,4):d .

The number of tokens in this place denotes the
number of occurrences of this object.

Every object- rule can be represented by an
event type transition. For example, in membrane
0, the rule p,, :c —dd,,,, can be described by a

pl = {pl,l a— bher‘ecoutdinZ > pl,Z :b —da

Pr,:b—>a

out

in2?
transition 7, ,. Because two copies of object d

are send to membrane 2, the weight of the arc
(t, ,»p,,)1s 2, which denotes that whenever the

rule p,, is performed, one copy of object ¢ will

be removed in membrane 0 and two copies of
object d will be sent to membrane 2.

Up to now, all objects and rules of rP1 are
encoded in DM -net as following:

DM1=[, DE, [, DE, [, DE,1, 1, 1,
DE,=p,,V1py s |, Py v Pos |y, Pail2]
DE, =1p, |, (%P1, PO p,) (11)

DE, = p, |,2’l D, Pri(t,))>Pri(t,,)

DEl = DE, v DE, v DE,

The dissolving rule mr, =6 1s represented in
DM -net by the following mr rule:

n,: DM 1> DM'1,DM'1=[,DE;], (12)
DE; =1p, Vv p, s |;0v] 2po, (2] |zn'2 2Po,2>

308

DEI)

gr(na :(MDEl :(p0,3’2p1,2’1p2,1))

where M ™' is the current marking of DM 1.
The translation of P system 7P1 into DMI-net
described by (11) and DM’I-net described by
(12) is shown in figure 3 and figure 4,
respectively.

|

Figure 3 Translation of DE1 into DM1-net
for rp1.

—meD ------------------

Figure 4: Translation of DE'l into DM 'l -net
for rri1.

The reachability graph of DM -net in the listing
form is:

M =(p,,lp, U, >M™;

MlDEl = (1[70,3, 2171,2’ 1p, HIU, > MzDErl;
MY =(1pyys 2Py 55 2P0) [Us > MYF
MY = (1pyys 3pora1pos) U, > M
MfE’l = (lpo,l’ 41702)],

={to. 1) Uy = {8,070 4}
U,=U, = {zm}.

where U,

Conclusions

In this paper we have proposed an approach to the
performance modeling of the behaviour of P
systems through a class of Petri nets, called
Descriptive Membrane Timed PN (DM-nets).

309

Based upon the introduction of a set of descriptive
composition operation and rewriting rules attached
to transitions for the creation of dynamic rewriting
TPN, the membrane structure can be successfully
encoded as a timed membrane Petri nets models
which permits the description of the state based
process, in run-time structure change of P systems,
and verification of its behavioral properties.

An important feature characterizing the proposed
basic DM-net model is its robustness, in the sense
of being easily extendable to handle salient
features of more sophisticated active membrane
systems.

We are currently developing a visual simulator
software with a friendly interface for verifying and
performance evaluation of descriptive rewriting
TPN models and DM-nets.

References

[1] Ajmone-Marsan, M., Balbo G., Conte G.,
Donatelli S., and Francheschinis G. (1995)
Modeling with Generalized Stochastic Petri Nets,
In Parallel Computing, New York: Wiley.

[2] Gutuleac, E. (2004) Descriptive Compositio-
of GSPN Models for
Performance Evaluation of Computer Systems, In
Proc. of the 8-th International Symposium
SACCS04, 22-23 October, Iasi, Romania, CD.

[3] Gutuleac, E., Mocanu M. (2005) Descriptive
Dynamic Rewriting GSPN-based Performance
Modeling of Computer Systems, In Proc. of the
15" Intern. Conf. CSCSI15, 25-27 May 2005,
Bucuresti, Romania, pp. 656-661.

[4] Kleijn J., Koutny M., Rozenberg G. (2005)
Towards a Petri Net Semantics for Membrane
Systems. In Proceedings of the WMC6 2005, July
18-21, Wien, Austria, pp. 439-459.

[5] Paun, Gh. (2002) Membrane Computing. An
Introduction, Natural computing Series. ed. G.
Rozenberg, Th. Back, A.E. Eiben].N. Kok, H.P.
Spaink, Leiden Center for Natural Computing,
Springer—Verlag, Berlin, p. 420.

[6] Qi Z., You J., and Mao H. (2003) P Systems
and Petri Nets, Proceedings WMC 2003, Lecture

Notes in Computer Science, vol. 2933, Springer-
Verlag, Berlin, pp. 387-403.

nal Construction

https://www.researchgate.net/publication/229036654

