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Abstract. In order to capture the compartmentalization and the behaviour of membrane systems for 
performance modelling of parallel and distributed computing, we introduce the Descriptive Timed Membrane 
Petri Nets (DM-nets) that can modify, in run-time, their own structure by rewriting some of their descriptive 
expression components. Furthermore, this descriptive approach facilitates the understanding of complex models 
and their component-based construction as well as the application of modern computer engineering concepts. 
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Introduction 
 
Recent technological achievements require 
advances beyond the existing computational 
models in order to be used effectively. 
Pragmatic aspects of current and future 
computer systems will be modelled so that 
realistic estimations of efficiency can be given 
for algorithms in these new settings. 
Petri nets (PN) are very popular formalism for 
the analysis and representation of parallel and 
distributed computing in concurrent systems, 
that has drawn much attention to modeling and 
verification of this type of systems [1, 3].  
P-systems, also referred to as membrane 
systems, are a class of parallel and distributed 
computing models inspired from the structure 
and the functioning of living cells [5].  
The interest of relating P systems with the PN 
model of computation leads to several important 
results on simulation and decidability issues. 
Some efforts have been made to simulate P 
systems with Petri nets [4, 6] in order to verify 
the many useful behavioral properties such as 
reachability, boundedness, liveness, 
terminating, deadlock-free, etc.  
In this paper we propose a new approach to 
define the components of continuous-time P 
systems [5] through components of Descriptive 
Petri Nets (DPN) using descriptive expressions 

(DE) [2]. The DE formalism is used for 
analytical representation and compositional 
construction of PN models.  
In order to model specific rules of P Systems 
within the framework of the Descriptive 
Rewriting Timed PN (RTN) [3], we introduce a 
new extension of RTN - the Descriptive Timed 
Membrane PN, called DM-nets. It can modify 
dynamically its own structure by rewriting rules 
that determine structural dynamic changes of its 
components within P systems.  
 
Labeled Extended Petri nets 
 
In this section, we present a variant of PN called 
labeled extended PN. Let L  be a set of 
labels TP LLL ∪= , ∅=∩ TP LL . Each place ip  
labeled Pi Lpl ∈)(  has a local state and the 
transition tj being an action is labeled Tj Ltl ∈)( . 
Labeled PN is a structure Γ = < P, T, Pre, Post, 
Test, Inh, G, Pri, Kp, l >, where:  P is the finite 
set of places and T is a finite set of transitions so 
that ∅=∩TP . In the graphical representation, 
the place is drawn as a circle and the transition 
is drawn as a black bar; the Pre, Test and 

++ →×× ININTPInh P ||:  is respectively a 
forward flow, test and inhibition functions and 

++ →×× ININPTPost P ||: is a backward flow 
function in the multi-sets of P, which define the 
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set of arcs A and describes the marking-
dependent cardinality of arcs that connect 
transitions and places. The directed arcs, Pre 
and Post, are drawn as single arrows. The 
inhibitory arcs, Inh, are drawn with a small 
circle at the end, and the test arcs, Test, are 
drawn as dotted single arrows. It does not 
consume the content of the source place. By 
default, the cardinality value of arcs is 1; 

→× +
||: PINTG {True, False} is the guard 

function of transitions. For t∈T, a guard function 
g(t, M) is evaluated in each marking and if it is 
evaluated to True, the transition t is enabled, 
otherwise t is disabled (the default value is 
True); Pri: ++ →× ININT P ||  defines the priority 
functions for the firing of each transition and 
maps transitions into natural numbers

+IN  
representing their priority level. The enabling of 
a transition with higher priority disables all the 
lower priority transitions; +→ INPK p :  is the 
capacity of places, being by default of infinite 
value; the LPTl →∪: , is a labeling function 
that assigns a label to transitions and places. In 
this way, transition names are mapped into 
action names so that α== )()( kj tltl  where 

kj tt ≠  and β== )()( ni plpl  where ni pp ≠ .                                                                       
A marked labeled extended PN net is a pair N = 
<Γ , M0 >, where Γ  is a labeled PN structure and 
M0 is the initial marking of the net. +→ INPM :  
is the current marking of the net which is 
described by a vector-column 

),0,( PpmpmM iiii ∈∀≥= , where ii pm  is 
the number of tokens im  in place ip . M is the 
state of net that assigns to each place tokens 
represented by black dots.                                                                                                                                            
Details concerning the enabling and firing rules, 
and the evolution of N = <Γ , M0 > can be found 
in [2] as they require a great deal of space. 
 
Descriptive expressions of Petri nets 
 
Due to the space restrictions, we will give only a 
brief overview to this topic and refer the reader 
to [2, 3] and the references therein. In the 
following, because of abuse of notation, labels 
and names of nodes of the PN are the same. 

We use the concept of a basic descriptive 
element (bDE) for a basic PN (bPN) introduced 
in [2] as the following: 
               k

k

j

j tiiiit WWpmbDE αα |],[| 0 −+= .        (1) 

 The translation of this bPN described by (1) is 
shown in figure 1a, where respectively ij pt •=  

is input transition (action type jα ) and •= ik pt is 
the output transition (action type kα ) of 

place Ppi ∈  with the 0
im initial marking, and 

respectively the flow type relation functions 
),(Pr iji pteW =+  and ),( kii tpPostW =− , 

which return the multiplicity of input and output 
arcs of the discrete place Ppi ∈ . The derivative 
elements of bDE are for 0, =∅= −•

ii Wp   

is ][| 0
iiit Wpmj

j

α  with final place ip  of jt  and for 

0, =∅= +•
ii Wp   is k

ktiii Wpm α|0  with entry 
place ip  of kt  (see figure 1b). If the initial 
marking 0

im of place ip  is zero tokens we can 
omit 00 =im in bDE. By default, if the type of 
action α  is not mentioned this one matches the 
name of transition t. From a bDE we can build 
more complex DE of PN components by using 
composition operations.  
 Also, by default, if 1== −+

ii WW , we present 
bDE and it derivatives as following: 

  k

k

j

j tiit pm αα || 0 ,  iit pmj

j

0| α   or  k

ktii pm α|0    (2) 

 
 

Figure 1. Translation in bHN (a) of  bDE and 
(b) its derivatives. 

 
A descriptive expression (DE) of a labeled PN is 
either bDE or a composition of DE a N:  
          DE :: = bDE | DE∗DE | oDE  ,  
where ∗  is any binary composition operation 
and o  is any unary descriptive operation. 
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Descriptive Compositional Operations. In the 
following, by default the labels of N are encoded 
in the name of the transitions and places. The 
composition operations are reflected at the level 
of the DE components of N models by fusion of 
places, fusion of transitions with same type and 
same name (label) or sharing of subnets. 
Place-Sequential Operation. This binary opera-
tion, denoted by the “ | ” sequential operator, 
determines the logic of an interaction between 
two local states ip (pre-condition) and kp  (post-
condition) by jt  action, which are in precedence 
and succeeding (causality-consequence) relation 
relative to this action. Thus, the expression: 
          ][|][1 00

kkktiii WpmWpmDE j

j

α=   

          ][|][ 00
iiitkkk WpmWpm j

j

α≠                    (3) 
means the fact that the specified conditions 
(local state) associated with place-symbol ip are 
always satisfied by means of the action jt before 
the occurrence of the conditions associated with 
place-symbol kp . Also, the PN modeling of the 
iteration operation is obtained by the fusion of 
head (entry) place with the tail (final) place that 
have the same name (closing operation) in DE 
which describes this net. The self-loop of N2 net 
described by: 

][|][2 0
iitiii WpWpmDE j

j

α=
j

jtiii Wpm α|][~0= (4) 

and represents the test operator “~”, i.e. test arc.  
Inhibition Operation. This unary operation is 
represented by inhibitory operator “ – “  

(represented by place-symbol with overbar). 
j

jtiii WpmDE α|][3 0=  describes the inhibitor arc 

in N models with a weight function 
),( jii tpInhW = .  

Synchronization Operation. This binary opera-
tion, represented by “• ” or “∧ ” join operator, 
describes the rendez-vous synchronization (by 
transition jt ) of two or more conditions 
represented respectively by symbol-place 

ji tp •∈ , ni ,...1= , i.e. It indicates that all 
preceding conditions of occurrence actions must 
have been completed.  

Split Operation. This binary operation, 
represented by the “ ◊ ” or “( ◊ )” split or fork 
operators, describes, determines the causal 
relations between activity tj and its post-
conditions: after completion of the preceding 
action of tj concomitantly, several other post-
condition can occur in parallel. 
Competing Parallelism Operation. This 
compositional binary operation is represented by 
the “∨ ” competing parallelism operator, and it 
can be applied over NA with DEA = A and NB 
with DEB = B or internally into resulting NR with 
DER = R, between the places of a single NR 
where the symbol-places with the same name 
are respectively fused. We can represent the 
resulting DER = BAR ∨=  as a set of ordered 
pairs of places with the same name to be fused, 
with the first element belonging to A and the 
second to B. The fused places will inherit the 
arcs of the place in A and B.  
Precedence Relations between the Operations. 
We introduce the following precedence relation 
between the compositional operations in the DE: 
a) the evaluation of operations in DE are applied 
left-to-right; b) an unary operation binds 
stronger than a binary one; c) the “ • ”operation 
is superior to ”/” and “ ◊ ” is superior to  ”∨ ” . 
Further details on definitions, enabling and 
firing rules, and evolution for of N can be found 
in [3] as they require a great deal of space. 
 
Dynamic Rewriting Petri Nets 
 
In this section we introduce the model of 
descriptive dynamic net rewriting PN system. 
Let YX ρ be a binary relation. The domain of ρ  
is the Dom( ρ ) = Yρ and the codomain of ρ  is 
the Cod(ρ ) = ρX . Let A= < Pre, Post, Test, Inh 
> be a set of arcs that belong to net Γ . 
Definition 1. A descriptive dynamic rewriting 
PN system is a structure: 

>=< MGGRRN rtr ,,,, φΓ , where Γ = < P, 
T, Pre, Post, Test, Inh, G, Pri, Kp, l >; 

}...,,{ 1 krrR =  is a finite set of rewriting rules 
about the runtime structural modification of net 
so that ∅=∩∩ RTP .  
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In the graphical representation, the rewriting 
rule is drawn as two embedded empty 
rectangles. We let RTE ∪=  denote the set of 
events of the net; },{: RTE →φ is the function 
that indicates for every rewriting rule the type of 
event can occur; →× +

||: P
tr INRG {True,False} 

is the transition rule guard function associated 
with Rr ∈ , and →× +

||: P
r INRG {True, False} 

is the rewriting rule guard function defined for 
each rule of Rr ∈ , respectively. For Rr∈∀ , 
the trtr GMg ∈)(  and rr GMg ∈)(  will be evaluated 
in each marking and if they are evaluated to 
True, the rewriting rule r is enabled, otherwise it 
is disabled. Default value of trtr GMg ∈)(  is True 
and for rr GMg ∈)(  is False). Let >=< MRRN ,Γ  
and >=< rtr GGRR ,,, φΓΓ  be represented by 
the descriptive expression DERГ and DERN, 
respectively. A dynamic rewriting structure 
modifying the rule Rr∈  of RN is a map 

WL DEDEr >: , where the codomain of the 
rewriting operator, > , is a fixed descriptive 
expression LDE of a subnet LRN of current net 
RN, where RNRNL ⊆  with PPL ⊆ , EEL ⊆ and 
set of arcs AAL ⊆ and the domain of >  is a 
descriptive expression WDE of a new wRN  
subnet with PPw ⊆ , EEw ⊆  and set of arcs WA . 
The rewriting operator, > , represents a binary 
operation which produces a structure change in 
DERN of the RN net by replacing (rewriting) the 
fixed current LDE of the subnet LRN  
( LDE and LRN  are dissolved) by the new WDE of 
subnet WRN  that now belongs to the new 
modified resulting NRDE ′  of the net 

WL RNRNNRNR ∪=′ )\(  with WL PPPP ∪=′ )\(  
and WL EEEE ∪=′ )\( , WL AAAA +−=′ )(  where 
the meaning of \ (∪) is operation of removing  
(adding) LRN from ( WRN  to) net RN. In this new 
net NR ′ , obtained by the execution of the 
enabled rewriting rule Rr∈ , the places and 
events with the same attributes which belong 
to NR ′ are fused. By default, the rewriting rules 

∅>LDEr :  or WDEr >∅:  describe the rewriting 
rule which maintains )\( LRNRNNR =′  or 

)( WRNRNNR ∪=′ . A state of a RN net is the pair 
( MR ,Γ ), where ΓR  is the configuration of the 
net together with a current marking M.  Also, the 
pair ( 00 , MRΓ ) with PP ⊆0 , EE ⊆0  and marking 
M0 is called the initial state of the net.                               
Enabling and Firing of Events. The enabling of 
events depends on the marking of all places. We 
say that a transition jt  of the event je  is enabled 
in current marking M if the following enabling 
condition ),( Mtec j  is verified: 

&)),(Pr((),( jii
tp

j tpemMtec
ji

≥∧=
•∈∀

<∧
∈∀

k
tp

m
jk

(
o

&)),( jk tpInh &)),((
* jll
tp

tpTestm
jl

≥∧
∈∀

&)),()(( jnnp
tp

tpPostmK
n

jn

≥−∧
•∈∀

)),( Mtg j      (5)  

The rewriting rule Rrj ∈  is enabled in current 
marking M if the following enabling condition 

),( Mrec jtr  is verified:  

&)),(Pr((),( jii
rp

jtr rpemMrec
ji

≥∧=
•∈∀

<∧
∈∀

k
rp

m
jk

(
o

&)),( jk rpInh &)),((
* jll
rp

rpTestm
jl

≥∧
∈∀

 

&)),()(( jnnp
rp

rpPostmK
n

jn

≥−∧
•∈∀

)),( Mrg jtr   (6) 

 
Let the T(M) and  R(M), ∅=∩ )()( MRMT , be 
the set of enabled transitions and rewriting rules 
in current marking M, respectively. Let 
the )()()( MRMTME ∪= , be the set of enabled 
events in a current marking M. The event 

)(MEe j ∈ fires if no other event )(MEek ∈  
with higher priority has been enabled. Hence, 
for je event if 

))),(()()(( FalseMrgrt jtrjjjj =∧=∨= φφ  then the 
firing of the transition )(MTt j ∈  or of the 
rewriting rule )(MRrj ∈  changes only the 
current marking: 

),(),( MRMR je ′⎯→⎯ ΓΓ ΓΓ RR =⇔ ( and the 
MeM j ′>[  in ΓR )). Also, for the event je , if  

))),(()(( TrueMrgr jrjj =∧=φ  then the event je  
occurs at firing of the rewriting rule jr and it 
changes the configuration and marking of the 
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current net, so that: ),(),( MRMR jr ′′⎯→⎯ ΓΓ , 
MrM j ′>[ ).  

The accessible state graph of a net 
><= MRRN ,Γ  is the labeled directed graph 

whose nodes are states and whose arcs, which 
are labeled with events or rewriting rules of 
RN , are of two kinds: a) firing of an enabled 
event )(MEe j ∈ : arcs from state ),( MRΓ  to 
state ( MR ′,Γ ) labeled with event je , so that 
this event can fire in the configuration ΓR at 
marking M and leads to a new marking 

⇔′′⎯→⎯′ ),(),(: MRMRM je ΓΓ ( ΓΓ ′=RR  and 
[ MeM j ′>[  in ΓR ); b) change configuration: 
arcs from state ),( MRΓ  to state( MRR ′′,Γ ) 
labeled with the rewriting rule Rrj ∈ , 

:jr ( LL MR ,Γ )> ( WW MR ,Γ ) which represent the 
change configuration of current RN net:  

),(),( MRMR jr ′′⎯→⎯ ΓΓ  with  MrM j ′>[ . 
 

  
a) 

 
b) 

Figure 2: Translation: a) 1ΓRDE  in RN1 and 
b) 2ΓRDE in RN2. 

 
Let we consider the RN1 net, given by the 
following descriptive expression: 

1211 1
| ΓΓ RrR EDppDE ′∨=

)(|||)( 51343521 21
ppppppED tttR ◊⋅=′ Γ      (7) 

)1,5( 510 ppM = , 211 : ΓΓ RR DEDEr >  
)0(&)3(),( 511 === mmMrgr  

Also, for the rewriting rule jr  is required to 
identify if LRN net belongs to the ΓR . The firing 

of enabled events or rewriting rules modify the 
current marking and/or modify the structure and 
the current marking of RN1 in RN2 given by: 

2212 1
| ΓΓ RtR EDppDE ′∨= ,

))(|||(||)( 615543622 25432
ppppppppED rttttR ◊∨⋅=′Γ , 

12
1

12 : ΓΓ RR DEDErr >−= , )1,3,1( 321 pppM = ,  
      )1(&)4(),( 512 === mmMrgr                     (8) 

The translation of expression (7) 1ΓRDE  in RN1 
and expression (8) 2ΓRDE  in RN2 is shown in 
figure 2a and figure 2b, respectively. 
 
Dynamic Rewriting Timed Petri Nets 
 
Systems are described in timed PN (TPN) as 
interactions of components that can perform a 
set of activities associated with events. An event 
e = ( θα , ), where E∈α  is the type of an 
activity (action name), and θ  is the firing delay.  
Definition 2. A descriptive dynamic rewriting 
TPN is a RTN = < RN, θ  >, where:  
• >=< MGGRRN rtr ,,,, φΓ , Γ = < P, T, 

Pre, Post, Test, Inh, G, Pri, Kp, l > with set of 
events τEEE ∪= 0 which can be partitioned into 
a set 0E  of immediate events and a set τE of 
timed events, so that ∅=∩ τEE0 , Pri(E0) > 
Pri( τE ). The immediate event is drawn as a 
thin bar and the timed event is drawn as a black 
rectangle for transitions and two embedded 
empty rectangles for rewriting rules;   
• ++ →× IRINE P||:θ is the weight function 

that maps events onto real numbers +IR (delays 
or weight speeds). It can be dependent of the 
marking. The delays )(),( MdMe kk =θ  defines 
the duration of timed events.  
If several timed events )(MEej∈ are 
concurrently enabled in current marking for the    

}0),(Pr:{ >∈∀=∈•
jijij epeEepe , either in 

competition or independently, we assume that a 
race competition condition exists between them. 
The evolution of the model will determine 
whether the other timed events have been 
aborted or simply interrupted by the resulting 
state change. The )(),( MwMe jj =θ is the 
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weight speed of immediate events ej∈E0. If 
several enabled immediate events are scheduled 
to fire at the same time in vanishing marking M 
with the weight speeds, then the probability of 
the enabled immediate event ej to   fire is: 

     =)(Mq j ∑
•∈ ))&((

),(/),(
il pMEe

lj MewMew      (9) 

 where E(M)  is the set of enabled events in M. 
An immediate event has a zero firing time.       
 
P Systems and Timed Membrane Petri Nets 
 
Here we give a brief review of P systems and its 
encoding with DM-nets. A full guide for P 
systems can be referred to [4]. The main 
components of P systems are membrane 
structures consisting of hierarchically embedded 
membranes in the outermost skin membrane. 
Each membrane encloses a region containing a 
multiset of objects and possibly other 
membranes.  
In general, a basic evolution-communication P 
system with active membranes (of degree n ≥  0) 
is PΓ =(O, H, μ ,Ω , ( ρ ,π )), where: O is the 
alphabet of objects; H is a finite set of labels for 
membranes; μ  is a membrane structure 
consisting of n membranes labeled with 
elements h = 0,1,…, n-1 in H; Ω  is the 
configuration, that is mapping from membrane h 
of PΓ  (nodes inμ ) to multisets of 
objects Ωω ∈h , }{ , ihh ωω = , i=0,1,…, ||O  present 
in the corresponding region of membrane h, then 
the system is created; ρ  andπ is respectively 
the set of rules }{ , jhh ρρ = and its priorities 

}{ , jhh ππ = , j=0,1,…, k. The active membranes 
can be of two forms of rules jh,ρ : a) the object 
rules (OR), i.e., evolving and communication 
rules concerning the objects; b) the membranes 
rules (MR), i.e., the rewriting rules about the 
structural modification of membranes.  
The structure of a membrane is: 

hlliih ]][,...,][,[ ω , and each object rule ρρ ∈jh,  
has a form: },{:, δδωωωωρ ¬×→

linoutherejh , 
here l belongs to the label set of its sub- 
membranes, and hereω , outω , and 

linω denote the 

multiset of objects which will be kept in this 
membrane, send out of this membrane, and send 
into its sub-membrane labeled by l, respectively. 
The δ denotes the dissolving rule. 
Here we present the DM-nets for encoding of P 
systems mentioned above into descriptive 
dynamic rewriting TPN as a RTN. The basis for 
DM-nets is a membrane RTN that is a DE net 
structure comprising: places and its capacity, 
transitions and its priority, and guard function, 
weighed directed arcs from places to transitions 
and vice-versa, weighed inhibitory and test arcs.  
Consider the P system PΓ . The encoding of PΓ  
into DM-net is decomposed into two separate 
steps. First, for every membrane [h ]h we 
associate: to each object hih ωω ∈,  one place [h 

ihi pm ,
0 ]h with the initial marking 0

, ihm , and to 
each rule  ∈jh,ρ ρ one event [h jhe , ]h, that acts 
on the this membrane. Second, for every 
membrane [h   ]h we define the DEh of RTNh that 
corresponds to the initial configuration of the P 
system PΓ as [h  DEh  ]h .  
Let u , v and u′ , v′be a multiset of objects. 
Definition 3.  The DM-nets of degree n ≥  0,  is 
a construct  hhh

n
h DEDM ][ 01

0
−
=∨= , where: 

•  The hhhhjh vu ]][[:, ′′′ →ρ  evolving object 
rule with multiset of objects u , v  which will be 
kept in '' ][ hh  is  encoded as: 

                 hhvhjhtuhhh pp ]]|[[ ,,, ′′ ; 
•  The antiport rule, that realizes a 
synchronization of object c with the objects of 
the type hhhhhhhhih uvvu ]][[]][[:, ′′′′′ ′′→ρ , is 
encoded as: 
       hhvhuhihtchvhuhhh ppppp ]])(|)~([[ ,,,,,, ′′′′′′′′′′ ◊⋅⋅ .  
Also, the hhhhhhhhkh uu ]][[]][[:, ′′′′′ ′→ρ  sym-
port rule, that moves objects from inside to 
outside a membrane, or vice-versa is encoded 
as:  

hhuhkhtchuhhh ppp ]]|)~([[ ,,,, ′′′′′′′ ⋅ . 
Because the configuration means both a 
membrane structure and the associated multisets 
of objects, we need the rewriting rules for 
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processing membranes and multisets of objects 
as: MR = {mr0, mr1, mr2, mr3, mr4, mr5, mr6}. 
The above membrane rewriting rules (realized 
by the rewriting events in DE’s)   are defined as:  
•  mr0: Change rewriting rule, that changes, in 
run-time, the current structure and the multisets 
of objects of membrane h, encoded by 
descriptive expression hDE ′  and its marking 

hM ′  in a new structure hED ′′ with new marking 

hM ′′ : hhhhhhhhhh EDDE ]])[[]][[ ′′′′′′ ′> ; 
•  mr1: Dissolve rewriting rule says that the 
membrane h′  is dissolved and the  objects as 

hM ′  and sub-membranes of membrane h′  
belong now to its parent membrane h. The skin 
membrane cannot be dissolved: 
 hhhhhhhhh EDDEDE ][]][[ ′′′′ > , hhh MMM ′+=′ ; 
 •  mr2: Create rewriting rule, says that the new 
membrane h′with hED ′′′ and hM ′′′  is created in 
membrane h, the rest remain in the parent 
membrane h: 

hhhhhhhhh EDEDDE ]][[][ ′′′ ′′′> , hhh MMM ′′′+′= ; 
•  mr3: Divide rewriting rule says that the 
objects and sub-membranes are reproduced and 
added into membrane h′  and into h ′′ , 
respectively: 

hhhhhhh DEDE ′′ ][[][ > hhhh DE ]][ ′′′′ ; 
•  mr4: Merge rewriting rule says that the 
objects of membrane h′ and h ′′ are added to a 
new membrane h is:  
 hhhhhhhhh EDED []][][[ >′′′′′′′′′ ′′′ hhh EDED ]′′′ ′′∨′  
with new marking hhh MMM =′′+′ ′′′ ; 
•  mr5: Separate rewriting rule is the counterpart 
of the Merge rewriting rule and is done by a: 

hhhhhh EDED ′′′′ ′′∨′ [[][ > hhhhhh EDED ]][] ′′′′′′′′ ′′′  
with meaning that the content of membrane h is 
split into two membranes, with labels h′ and h ′′ , 
and the new marking is hhh MMM ′′′+′= ;  
•  mr6: Move rewriting rule where a membrane 
h ′′ can be moved out or moved into a 
membrane h′  as a whole is done by a: 

hhhhhhhhh DEDE []]][[[ >′′′′′′′′′  

hhhhhhh DEDE ]][][ ′′′′′′′′′    or   

hhhhhhhhhh DEDE ′′′′′′′′′′ [[]][][[ >  
hhhhhh DEDE ]]][ ′′′′′′′′  

with their marking, respectively.                             
Thus, using the DM-nets facilitates a compact 
and flexible specification and verification of 
parallel computing models. 
In order to describe the details of this approach, 
we present a simple but illustrative example of 
encoding PΓ  into DM-net.  
Consider the following P system 1PΓ of degree 3:  

012210 ],],][,[,[ ab=μ , },,,{ dcbaO = ,  
}{0 b=ω , }{1 a=ω , 21,00 :{ inddc →= ρρ , 

},: 12,0 inbb →ρ }{ 2,01,00 πππ >= ,                     (10) 

21,11 :{ inouthere dcba →= ρρ , },:2,1 δρ outab →  
},:2,1 δρ outab → ∅=1π , ,2 ∅=ω  ∅=2π . 

The encoding solution for the initial 
configuration of 1PΓ  described by (10) is given 
by the DM1-net, where every object can be 
represented as a place labeled as the name of 
objects: aplpl == )()( 1,11,0 , bplpl == )()( 2,12,0 , 

cpl =)( 3,0 , dplpl == )()( 4,01,2 . 
The number of tokens in this place denotes the 
number of occurrences of this object.  
Every object- rule can be represented by an 
event type transition. For example, in membrane 
0, the rule 21,0 : inddc →ρ , can be described by a 
transition 1,0t . Because two copies of object d 
are send to membrane 2, the weight of the arc 

),( 1,21,0 pt is 2, which denotes that whenever the 
rule 1,0ρ  is performed, one copy of object c will 
be removed in membrane 0 and two copies of 
object d will be sent to membrane 2. 
Up to now, all objects and rules of 1PΓ  are 
encoded in DM1-net as following:  

012221100 ]]][[[1 DEDEDEDM =  
]2[||1 1,21,03,01,22,02,01,00 pppppDE tt ∨∨=  

    )|(|1 1,21,01,12,13,01,11,11 pppppDE rt ◊◊=      (11) 

2,11,21,22 | ppDE t= , )(Pr 1,0ti )> )(Pr 2,0ti  

2101 DEDEDEDE ∨∨=  
The dissolving rule δ=1mr  is represented in 
DM1-net by the following mr1 rule: 

11:1,1 MDDMr ′> , 000 ][1 EDMD ′=′     (12) 
,2|]2[2|1 2,04,03,01,00 2,01,0

ppppED tt∨=′  
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))1,2,((),( 1,22,13,0
11

1,1 pppMMrgr DEDE ==  
 
where 1DEM  is the current  marking of 1DM . 
The translation of P system 1PΓ  into DM1-net 
described by (11) and DM’1-net described by 
(12) is shown in figure 3 and figure 4, 
respectively. 

 
Figure 3. Translation of 1DE  into DM1-net 

for 1PΓ . 
 

 
Figure 4: Translation of 1ED ′  into 1MD ′ -net 

for 1PΓ . 
 
The reachability graph of DM1-net in the listing 
form is: 

1
111,12,0

1
0 [)1,1( DEDE MUppM >= ;                 

1
221,22,13,0

1
1 [)1,2,1( EDDE MUpppM ′>= ; 

1
334,02,01,0

1
2 [)2,2,1( EDED MUpppM ′′ >= ;   

1
444,02,01,0

1
3 [)1,3,1( EDED MUpppM ′′ >= ;  

[)4,1( 2,01,0
1

4 ppM ED =′  ,                         
where },{ 1,12,01 ttU = ; },,{ 1,21,11,02 trtU = ;  

}{ 3,043 tUU == . 
 
Conclusions 
 
In this paper we have proposed an approach to the 
performance modeling of the behaviour of  P 
systems through a class of Petri nets, called 
Descriptive Membrane Timed PN (DM-nets). 

Based upon the introduction of a set of descriptive 
composition operation and rewriting rules attached 
to transitions for the creation of dynamic rewriting 
TPN, the membrane structure can be successfully 
encoded as a timed membrane Petri nets models 
which permits the description of the state based 
process, in run-time structure change of P systems, 
and verification of its behavioral properties.  
An important feature characterizing the proposed 
basic DM-net model is its robustness, in the sense 
of being easily extendable to handle salient 
features of more sophisticated active membrane 
systems. 
We are currently developing a visual simulator 
software with a friendly interface for verifying and 
performance evaluation of descriptive rewriting 
TPN models and DM-nets. 
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