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A B ST R A C T

In the employment of the finite element method (and other numerical methods) 

for solving application problems, an important issue is to assess the reliability of the 

numerical solution. A posteriori error estimates provide quantitative information 

on the accuracy of the numerical solution and are the basis for the development 

of automatic, adaptive procedures for engineering applications of the finite element 

method.

We perform an a posteriori error analysis for adaptive finite element solution 

of elliptic variational inequalities of the second kind. Using duality theory in convex 

analysis, we establish a general framework for a posteriori error estimation. We then 

derive a posteriori error estimates of residual type and of gradient recovery type, with 

particular choices of the dual variable present in the general framework. The reliability 

of the error estimates is rigorously shown. The efficiency of the error estimators is 

theoretically investigated and numerically validated. Detailed derivation and analysis 

of the error estimates are given for a model variational inequality of the second kind.

We present extension of the results in solving other elliptic variational inequali­

ties such as those arising in the study of frictional contact problems in elasticity. First, 

we derive a posteriori error estimates for a static frictional contact problem, and then 

consider a quasistatic case.

We report numerous numerical examples, illustrating the effectiveness of the 

a posteriori error estimates.
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A B ST R A C T

In the employment of the finite element method (and other numerical methods) 

for solving application problems, an important issue is to assess the reliability of the 

numerical solution. A posteriori error estimates provide quantitative information 

on the accuracy of the numerical solution and are the basis for the development 

of automatic, adaptive procedures for engineering applications of the finite element 

method.

We perform an a posteriori error analysis for adaptive finite element solution 

of elliptic variational inequalities of the second kind. Using duality theory in convex 

analysis, we establish a general framework for a posteriori error estimation. We then 

derive a posteriori error estimates of residual type and of gradient recovery type, with 

particular choices of the dual variable present in the general framework. The reliability 

of the error estimates is rigorously shown. The efficiency of the error estimators is 

theoretically investigated and numerically validated. Detailed derivation and analysis 

of the error estimates are given for a model variational inequality of the second kind.

We present extension of the results in solving other elliptic variational inequali­

ties such as those arising in the study of frictional contact problems in elasticity. First, 

we derive a posteriori error estimates for a static frictional contact problem, and then 

consider a quasistatic case.

We report numerous numerical examples, illustrating the effectiveness of the 

a posteriori error estimates.
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1

C H A PT E R  1 
PR ELIM IN A R IES

1.1 Introduction

The finite element method today is the dominant numerical method for solv­

ing most problems in structural and fluid mechanics. It is widely applied to both 

linear and nonlinear problems. General mathematical theory of finite element meth­

ods can be found in [4, 28, 29, 59, 6 6 ], among others. The textbook [52] offers an 

easily accessible mathematical introduction of finite element methods, whereas the 

two recent textbooks, [19, 20], provide deeper mathematical theory together with 

more recent and current research development such as the multigrid methods. Tradi­

tionally, convergence of finite element solutions is achieved through mesh refinement 

with the use of piecewise low degree polynomial. Since h is usually used to denote the 

mesh size, the traditional finite element method is also termed as the /i-version finite 

element method. Convergence of the method can also be achieved by using piecewise 

increasingly higher degree polynomials over relatively coarse finite element meshes, 

leading to the p-version finite element method. Detailed discussion of the p-version 

finite element method can be found in [6 8 ]. The p-version method is more efficient 

in areas where the solution is smooth, so it is natural to combine the ideas of the 

p-version and the h-version to make the finite element method very efficient on many 

problems. A well-known result regarding the h-p-version finite element method is the 

exponential convergence rate for solving elliptic boundary value problems with corner
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2

singularities. Comprehensive mathematical theory of the p-version and h-p-version 

finite element methods with applications in solid and fluid mechanics can be found 

in [65]. Mixed and hybrid finite element methods are often used in solving boundary 

value problems with constraints and higher order differential equations. Mathemati­

cal theory of these methods can be found in [21, 64]. Several monographs are available 

on the numerical solution of Navier-Stokes equations by the finite element method, 

see e.g. [35]. Theory of the finite element method for solving parabolic problems can 

be found in [69] and more recently in [70]. Finally, we list a few representative engi­

neering books on the finite element method, [11, 51, 79, 80]. The reader is referred 

to two historical notes [58, 78] on the development of the finite element method.

For practical use of a numerical method, one important issue is the assessment 

of the reliability and accuracy of the numerical solution. The reliability of the numer­

ical solution hinges on our ability to estimate errors after the solution is computed; 

such an error analysis is called a posteriori error analysis. A posteriori error estimates 

provide quantitative information on the accuracy of the solution and are the basis for 

the development of automatic, adaptive solution procedures.

The research on a posteriori error estimation and adaptive mesh refinement for 

the finite element method began in the late 1970’s. The pioneering work on the topic 

was done in [5, 6 ]. Since then, a posteriori error analysis and adaptive computation in 

the finite element method have attracted many researchers, and a variety of different a 

posteriori error estimates have been proposed and analyzed. In a typical a posteriori 

error analysis, after a finite element solution is computed, the solution is used to
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3

compute element error indicators and an error estimator. The element error indicator 

represents the contribution of the element to the error in the computation of some 

quantity by the finite element solution, and is used to indicate if the element needs to 

be refined in the next adaptive step. The error estimator provides an estimate of the 

error in the computation of the quantity of the finite element solution, and thus can 

be used as a stopping criterion for the adaptive procedure. Often, the error estimator 

is computed as an aggregation of the element error indicators, and one usually only 

speaks of error estimators. Most error estimators can be classified into residual type, 

where various residual quantities (residual of the equation, residual from derivative 

discontinuity, residual of material constitutive laws, etc.) are used; and recovery 

type, where a recovery operator is applied to the (discontinuous) gradient of the 

finite element solution and the difference of the two is used to assess the error. Error 

estimators have also been derived based on the use of hierarchic bases or equilibrated 

residual. Two desirable properties of an a posteriori error estimator are reliability and 

efficiency. Reliability requires the actual error to be bounded by a constant multiple 

of the error estimator, up to perhaps a higher order term, so that the error estimator 

provides a reliable error bound. Efficiency requires the error estimator to be bounded 

by a constant multiple of the actual error, again perhaps up to a higher order term, 

so that the actual error is not over-estimated by the error estimator. The study and 

applications of a posteriori error analysis is a current active research area, and the 

related publications grow fast. Some comprehensive summary accounts can be found, 

in chronological order, in [73], [1], and [7].
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4

Initially, a posteriori error estimates were mainly developed for estimating the 

finite element error in the energy norm. In the recent years, error estimators have 

also been developed for goal-oriented adaptivity. The goal-oriented error estimators 

are derived to specifically estimate errors in quantities of interest, other than the 

energy norm errors. Chapter 8  of [1] is devoted to such error estimators. The latest 

development in this direction is depicted in [10, 34].

Most of the work so far on a posteriori error analysis has been devoted to 

ordinary boundary value problems of partial differential equations. In applications, 

an important family of nonlinear boundary value and initial-boundary value problems 

is that associated with variational inequalities, that is, problems involving either 

differential inequalities or inequalities over boundaries or sub-domains. Mechanics is 

a rich source of variational inequalities (cf. e.g. [60]), and some examples of problems 

that give rise to variational inequalities are obstacle and contact problems, plasticity 

and visco-plasticity problems, Stefan problems, unilateral problems of plates and 

shells, and non-Newtonian flows involving Bingham fluids. An early comprehensive 

reference on the topic is [31], where many nonlinear boundary value problems in 

mechanics and physics are formulated and studied in the framework of variational 

inequalities. A concise introduction to the mathematical theory of some variational 

inequalities can be found in [55]. Numerical approximations of general variational 

inequalities are studied in detail in [36, 37]. Numerical methods for some variational 

inequalities arising in mechanics are the subject of [48, 49]. Mathematical analysis 

and numerical approximations of variational inequalities arising in contact mechanics
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are presented in [54] (for elastic materials) and [47] (for viscoelastic and viscoplastic 

materials). In [44, 45], elastoplasticity problems are formulated and analyzed in the 

form of variational inequalities.

Although several standard techniques have been developed to derive and an­

alyze a posteriori error estimates for finite element solutions to problems in the form 

of variational equations, they do not work directly for a posteriori error analysis of 

numerical solutions to variational inequalities. Nevertheless, numerous papers can be 

found on a posteriori error estimation of finite element solutions of obstacle problems, 

e.g., [2], [27], [50], [56], [57], [71] (these papers consider numerical solutions on convex 

subsets of finite element spaces), as well as [33], [53] (these papers use a penalty ap­

proach for discrete solutions). Obstacle problems are so-called variational inequalities 

of the first kind, that is, they are inequalities involving smooth functionals and are 

posed over convex subsets. We also note that a posteriori error estimation is discussed 

in [13, 14, 67], though the arguments in these papers are arguable.

In the context of elastoplasticity with hardening, computable a posteriori error 

estimates are derived in [3, 22, 24] for the primal problem, which is a variational 

inequality of the second kind; that is, the inequality arises as a result of the presence 

of a non-differentiable functional. These works deal extensively also with a priori 

estimates, and in the latter work a number of numerical examples are presented. 

Residual type error estimators were studied for an elliptic variational inequality of 

the second kind in [17, 18].

In this thesis, we derive and study some a posteriori error estimates for finite
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6

element solutions of elliptic variational inequalities of the second kind. The basic 

mathematical tool we will use is the duality theory in convex analysis (cf. [32], [76]). 

Duality theory has been applied to derive efficient a posteriori error estimates for 

mathematical idealizations of physical and engineering problems (see, e.g., [39], [40]), 

as well as for some numerical procedures for solving nonlinear problems, such as the 

regularization techniques in [38], [43] and [46], and the Kacanov iteration method in 

[41, 42]. In [62, 61], duality theory techniques were used to derive a posteriori error 

estimates of the finite element method in solving boundary value problems of some 

nonlinear equations. In these papers, the error bounds are shown to converge to zero 

in the limit as the meshsize approaches zero; however, no efficiency analysis of the 

estimates is given.

1.2 Thesis Organization

The remaining part of this thesis is organized as follows:

In Chapter 2 we introduce some basic notations and results concerning func­

tion spaces, variational inequalities and duality theory in convex analysis. A model 

variational inequality of the second kind is introduced together with its finite element 

discretization and dual formulation.

In Chapter 3 a general framework for a posteriori error estimation is established 

by using duality theory. We then derive a posteriori error estimates of residual type 

and of gradient recovery type, with particular choices of the dual variables present 

in the general framework. The error estimates are shown to be reliable. Efficiency of
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7

the error estimates is theoretically investigated and numerically validated.

In Chapter 4 we present an application of our results to frictional contact prob­

lems. We consider both static and quasistatic contact processes. Several numerical 

examples are reported.
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8

C H A PT E R  2 
M ODEL PROBLEM  A N D  DUA L FORM ULATION  

2.1 Basic R esults and N otations

In this section, we introduce some basic results and notations, which will be 

needed in the subsequent parts of this thesis. We start with a review of function 

spaces, then we recall some main results regarding convex analysis, variational in­

equalities and duality theory.

2.1.1 Function spaces 

Let be a bounded open domain in Rd, d > 1, with Lipschitz boundary 

T =  dfl. The assumption that Q has a Lipschitz boundary makes it possible to 

define the outer unit normal vector v at almost all points of the boundary. A d-tuple 

a  =  (ax, « 2 , • ■ ■, ®d) of non-negative integers a^, i =  1 , . . . ,  d, is called a multi-index 

and its length is defined as |a | =  J2i=ia i- If ^ ^  R is a sufficiently smooth

function, then D av denotes the a th  derivative of the function v,

D “v =  — ___
d x . . .  dxadd '

Let m  be a non-negative integer and [1, oo). We start with some standard function 

spaces:

• Co°(f2) denotes the space of all infinitely differentiable real functions with com­

pact support.

•  C m(Vl) denotes the set of all real functions defined in Q, the derivatives of which
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9

up to the order m  can be continuously extended on The expression

wllc-(h) =  ^ 2
\a\<m XeQ

defines the norm with respect to which Cm(Vl) is a Banach space. Further

•  Lp(Ct) for p G [1, oo) denotes the space of all (equivalence classes of) real mea­

surable functions v in for which |H|z,P(n) <  oo, where

• Z/°°(fi) stands for the space of all real essentially bounded measurable functions 

in Q. More precisely: v G L°°(Q) iff v is measurable and

IMU°°(n) =  ess sup |u(x)| < oo.

• LP0C(Q) denotes the space of all locally p-integrable functions. A function v is 

a locally p-integrable function if v G LP{VL') for any proper subset Q! C C  f2. 

When v G L\0C{Q), we say v is locally integrable.

To introduce the Sobolev spaces, we first recall the following definition of the weak 

derivative:

In particular, L2(Vt) is a Hilbert space equipped with the inner product
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10

D efinition 2.1.1. Let v ,w  G Lf0C(Q) and a a multi-index. Then w is called an ath 

weak derivative of v if

A weak derivative, if it exists, is uniquely defined a.e. With the notion of weak 

derivative, we can introduce Sobolev spaces.

D efinition 2.1.2. Let m  be a non-negative integer andp  G [1, oo]. The Sobolev space

with | a |  < m, the ath weak derivative D av exists and Dav G Lp(fl). The norm in 

the space W m,p(Q) is defined as

v

When p = 2, we write H m{Ll) =  W m,p(Ll).

In order to simplify notations, we replace |H|w™.p(n) by When p =  2,

we use ||n||m;n for |H|#m(n). The semi-norm over the space W m,p(Cl) is

J ('E\a\=mWDaVWPLP(n)) ^  , P e [ l , 0 0 ),
\v\wm,P(p.) — <

I max|a|=m ||DQn||Loo(n), p = oo.

It is known that W m,p{Vi) is a Banach space and consequently, H m{Q) is a Hilbert 

space with a canonical inner product

f  v(x)Daf>(x) dx =  (—l)l°l f  w(x)4>(x) dx G C£°(Q)

W m,p{Q) is the set of all the functions v G L}0C{Ll) such that for each multi-index a

( £ | a|< m lP “HIL>(n)) /P> PG[ l ,oo) ,

(v, w)ffm(n) = /  D av(x)Daw(x) dx, v ,w  G
n  \a\<m
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