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a b s t r a c t

This paper reports results on investigations of the dynamical behavior of a semiconductor laser with
quantum dots active medium under the influence of a feedback from double external cavity. This con-
figuration is treated in the framework of Lang-Kobayashi equations. The locus of external cavity modes is
found to be elliptic, as in case of conventional optical feedback, but also represents different shapes, even
with possible satellite bubbles. A bifurcation analysis is carried out revealing the points of saddle-node
and Hopf bifurcations. Finally, the nature of bifurcations and the stability of steady state solutions are
analyzed in dependence on different parameters.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

During recent years, the phenomena of control and stabiliza-
tion, as well as the destabilization and chaos of laser emission by
external cavities have received considerable attention due to its
fundamental and applied interests. The main aim of technological
progress is the production of structures with stable properties and
the possibility of their application in different areas.

Stabilization of laser emission by external cavities has a long
history [1–5] and is still of continuous interest [6–10]. Another
well-known method of control is due to Pyragas [11] applied
successfully to different systems [12–14]. The control of a laser
subject to conventional optical feedback was studied in [15] where
it was shown that by using a second branch and properly adjusting
the feedback delays and strengths complex dynamical regimes can
be stabilized. These control techniques found certain applications
in information transmission systems.

On the other hand, different dynamical behaviors have been
obtained for lasers under the influence of feedback from external
cavities, including periodic and quasi-periodic pulsations, low
frequency fluctuations, coherent collapse, optical turbulence,
chaos (for more details, see [16]). The chaotic waveform is suitable
for chaos-based communications. Recently, chaotic communica-
tions have become an option to improve privacy and security in
date transmission, especially after the recent field demonstration
of the metropolitan fiber networks of Athens [17]. In optical chaos-
based communications, the chaotic waveform is generated by
using semiconductor lasers with either all-optical or electro-

optical feedback loops [18,19]. In particular, synchronized chaotic
waveforms have found applications in chaos based communica-
tion systems.

Due to the continuing technological progress, lasers with active
medium quantum dots have reach stable operation. Lasers with
active medium quantum dots are compact and good candidacy for
both applications: stabilization of laser emission and for chaos-
based communications. Arakawa [20] predicted that semi-
conductor lasers with active medium quantum dots have small
temperature dependence performance than the existing semi-
conductor lasers, and that they will not degrade at the high tem-
perature. Other advantages of lasers with quantum dots active
medium include the reduction of the threshold current and in-
crease of the amplification coefficient [21]. In recent years, their
dynamics has become the object of study and theoretical re-
searches are necessary for the development and extension of the
theory of nonlinear dynamics in semiconductor lasers with
quantum dots active medium. Here we consider a configuration
which includes feedback from an integrated double cavity. The
paper is organized as follows. The device structure and mathe-
matical model are described in Section 2. Section 3 is devoted to
the analysis of stationary states. A detailed study of the dynamical
properties of quantum dots lasers under the influence of double
cavity feedback are discussed in Section 4. Finally, conclusions are
drawn in Section 5.

2. Model and equations

In this paper, we focus on the investigation of the dynamical
behavior of semiconductor lasers with quantum dots active
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medium shown in Fig. 1. The setup consists of laser operating
under the influence of an external optical feedback from double
cavity. The first mirror is located at distance l from the laser front
facet. The distance between first and second mirrors is L. The
phase φ in the air gap can be changed by a piezo-element. The
optical feedback phase ψ in the second cavity can be controlled by
injecting current into the passive section. We assume that the
current injected into passive section is small enough to affect only
the refractive index, so that the optical length of the resonator is
changed in the sub-wavelength range. On the other hand, the
feedback phase φ can be tuned, by the change in the delay time
between the two mirrors.

For modeling of the dynamics of quantum dots laser under the
influence of double optical feedback we use the following equa-
tions [22,23] for dimension less quantities
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where E is the complex amplitude of the electric field, N is the
carrier density in the quantum well, and ρ is the occupation
probability in the quantum dot. τl¼0.05, τL¼0.2 are external
cavity round trip times which correspond to l¼7.5 mm, and
L¼1 cm, respectively. g¼1200 is the differential gain, and J¼20 is
pumping parameter. The constants B¼0.012 and C¼40 describe
the transport of charge carriers through carrier–phonon interac-
tion. α¼2 is the line width enhancement factor, γns¼1.0, and
γnp¼500. These parameter values are used for the calculated re-
sults that are shown in all figures of the paper. The parameters Г
and τ describe the feedback connection and the delay time, re-
spectively. Г1 and Г2 represent the feedback levels governed the
mirror reflectivity R1 and R2, respectively. We assume that both
facets of the material cavity can be coated to change their re-
flectivity. The feedback phase φ can be tuned by a small current or
be controlled with a piezo actuator. Thus, the feedback strengths
Г1 and Г2, as well as, the airgap phase φ are the main parameters
to be varied.

3. Stationary states

We begin our analysis by considering the stationary lasing

Fig. 1. Laser setup. l0 is the length of the laser, l is the distance between back facet
of laser and the first mirror of resonator. L is the distance between first and second
mirrors, ω0 is free running frequency of laser, φ is the feedback phase of the air gap,
and ψ is the phase within the resonator. τl and τL are external cavities round trip
times.

Fig. 2. Location of ECMs in the plane of (Ns�ωs) for fixed external resonator phase
ψ¼π/2, and different feedback strengths (a) Γ1¼10, Γ2¼0 (COF), (b) Γ1¼10, Γ2¼10,
(c) Γ1¼10, Γ2¼20, (d) Γ1¼20, Γ2¼20. ECAM, external cavity antimodes (dashed
green line). SN, saddle-node bifurcation. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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states of the system (1)–(3). They are given by rotating wave so-
lutions, usually called external cavity modes (ECMs),

ρ ρ= = = ( )ω τE E e N N, , . 4s
i

s s
s

Inserting (4) into (1)–(3) and splitting into real and imaginary
parts we obtain a transcendental equation for the emission fre-
quency ωs
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and equations for occupation probability, carrier density and out-
put intensity as follows
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It is well known, that in the case of conventional optical feed-
back (COF), the case of single cavity the ECMs are located on el-
lipse. In contrast to the case of COF, the feedback from double
cavity resonator implies also a non-elliptic location of modes.

Fig. 2 shows the locus of ECM in the plane of (Ns�ωs) for different
vales of feedback strengths.

We first consider the case of Γ1¼10 and Γ2¼0 so called con-
ventional optical feedback for which the locations of modes is an

Fig. 3. (a) Lines of saddle-node (thin) and transcritical (tick) bifurcations at dif-
ferent locations and number of ECMs in corresponding regions. (b) Bifurcation
diagram of the steady states in the plane |E| vs. the feedback strength Γ1 for φ¼π/2.
The solid lines show the modes and dashed lines antimodes. Squares indicate the
SN bifurcation. The rhomb denotes transcritical bifurcation. Other parameter:
Γ2¼10.

Fig. 4. Main bifurcations of system (1)–(3) for ψ¼π/2, and (a) Γ1¼10, Γ2¼10, (b)
Γ1¼10, Γ2¼20, Square, Saddle-Node (SN) bifurcation separating modes (black-
stable and red-unstable) and antimodes (green dotted line). Circle, Hopf bifurca-
tion. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. Lines of Hopf bifurcations of stable ECMs for ψ¼π/2 at different locations in
the plane (φ�Γ1) for (a) Γ2¼10, and (b) Γ2¼20.
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ellipse (see Fig. 2(a)). The case of COF was discussed in details
since two decades. When the feedback strength Γ1¼10 and Γ2 is
increased to 10 the central ellipse is deformed and the outer sa-
tellites i.e. bubbles appears (see Fig. 2(b)). As one can see in Fig. 2
(c), when Γ2 is increased to 20 the central ellipse is more de-
formed and is approaching a tilted eight. When both feedback
strengths Γ1 and Γ2 are increased to 20 the ellipse is split into
three bubbles of ECMs and additional satellite bubbles appear on
the left and right sides (see Fig. 2(d)). It is well known, that the

ECMs appear at saddle node bifurcation in pairs so called modes
and antimodes. Differentiating (5) we obtain the condition for
saddle node bifurcations
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We solved this equation together with (6)–(8) for parameters of
Fig. 2. The saddle-node SN points in Fig. 2 separate the ECMs in

Fig. 6. Time evolution of output power (left), and phase portrait in the plane output power P – the density of carrier's N (right) for different values of phase φ (a) φ¼π/2, CW
operation, (b) φ¼0, self-pulsations, and (c) φ¼π, chaotic behavior. Other parameters: Г1¼20, Г2¼20, ψ¼π/2.
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saddle and nodes, that are called antimodes and modes. The an-
timodes are always unstable (dashed line in Fig. 2), while modes
may be stable or unstable.

Fig. 3(a) shows the bifurcation scenario when the feedback
strength Γ1 is the bifurcation parameter. There is a region where
only one mode is present. Additional ECMs (in pairs) appear when
crossing the SN curve (thin lines). By thick line transcritical bi-
furcation, obtained from (9), is shown. Fig. 3(b) resembles the si-
tuation for fixed φ¼π/2 (see dashed line in Fig. 3(a)). Note that
each symbol from this line is reproduced in Fig. 3(b).

4. Quantum dot laser dynamics

In the following, we use the software DDE-BIFTOOL [24] to
investigate the stability of the stationary solutions i.e. of ECMs
discussed above, and to find the main bifurcations in the plane of
different parameters.

However, we have to mention that for this purpose, it is ne-
cessary to use the ECM frequency ωs as a reference frequency,
which transforms the rotating wave into a stationary solution. In
this way, ωs is considered as an extra free parameter. To exclude
the degeneracy originating from the phase shift invariance, one
has to induce an additional constraint, e.g., ImE¼0. Fig. 4 show the
location of saddle node (square) and Hopf bifurcations (circle) on
curves of stationary states for the cases shown in Fig. 2 except that
of COF which has been investigated in many references. By solid
line we show the stable stationary solutions and by dotted the
unstable one. For ψ¼π/2, and Γ1¼Γ2¼10 the all ECMs of left

bubble are stable (see Fig. 4(a)).
On the other hand, for middle ellipse and right bubble some

modes become unstable (dotted lines) via the Hopf bifurcation
(circles). When we increase the feedback strength Γ2 to 20 (see
Fig. 4(b)) a region of instability appears for ECMs of left bubble.
Some ECMs of the middle distorted ellipse are stable (solid line),
while others are unstable (dotted lines). For the right bubble, all
ECMs are unstable. Thus, an increase of the feedback strength
leads to wide unstable regions.

Fig. 5 shows specific Hopf bifurcations in the plane (φ�Γ1) for
fixed value of phase ψ¼π/2, and different values of Γ2. Each un-
stable region bordered by Hopf bifurcation corresponds to that of
Fig. 4. One can see wide regions of instabilities. Thus, in what
follows we consider the numerical investigations of solutions of
system of (Eqs. (1)–3) to see in more detail of the dynamical
behavior.

Fig. 6 shows numerical calculations of pulse traces of the out-
put intensity (left) and phase portrait in the plane of (output in-
tensity–currier density) for different types of dynamical behaviors,
where the phase φ is parameter to be changed. Fig. 6(a) shows the
continues wave operation, where the stable stationary region
contains a stable focus for φ¼π/2. Fig. 6(b) presents the time
evolution of the output intensity for the regular behavior i.e., self-
pulsations, where the phase trajectory becomes a stable limit cycle
(φ¼0). The frequency of the pulsation shown in Fig. 6(b) is ap-
proximately 20 GHz. When the phase is φ¼π, the oscillations of
the output intensity become more complicated, the chaotic be-
havior appears and the phase portrait is a strange attractor (see
Fig. 6(c)).

Next we examine the laser dynamics in terms of numerical
bifurcation diagrams. The numerically calculated diagrams for
different feedback strengths are shown in Fig. 7, where the phase
φ is the bifurcation parameter and the phase ψ is fixed to π/2.
These figures displays the values of all the local maxima and
minima of the time traces of the carrier density. When we increase
the phase for Г1¼10, Г2¼10 the continue wave CW operation is
observed (see Fig. 7(a)). Then the laser begins to produce oscilla-
tory behavior through a subcritical Hopf bifurcation H1 in this
figure. Since the oscillations are periodic, for a given phase all the
local maxima (minima) of the output power have the same value
and consequently a single point appears in this figure for the
maximum (minimum). The other Hopf bifurcation H2 is super-
critical. Only within small region between H1 and H2 we see the
non-periodic behavior. A jump between modes can be observed at
transcritical bifurcation T.

Fig. 7(b) shows the bifurcation diagram for increased feedback
strength Г2¼20. After periodic solution P a period doubling (PD) is
observed and a jump to chaotic behavior takes place. For further
increase of both feedback strengths Г1¼20 and Г2¼20 a wide
region of strong chaos is present (see Fig. 7(c)). One can see also
the torus bifurcation within some region of phase in Fig. 7(c). Fi-
nally, we mention that these regions with instabilities and chaos
are appropriate for application chaos based communication.

5. Conclusions

In this paper we have studied the dynamics of a device com-
posed by a semiconductor laser with active medium quantum dots
subject to a double cavity optical feedback. Main advantages of
proposed scheme include the existence of two feedback strengths,
two feedback phases and two delay times that can be controlled
separately. We have treated the setup in the framework of prop-
erly adapted Lang-Kobayashi equations. We show that in com-
parison with conventional optical feedback where the steady
states are located on top of an ellipse in the (Ns�ωs) plane, in the

Fig. 7. Numerical bifurcation diagram for the phase φ being a bifurcation para-
meter for ψ¼π/2 and different feedback strengths (a) Г1¼10, Г2¼10, (b) Г1¼10,
Г2¼20, and (c) Г1¼20, Г2¼20.
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double cavity case the ellipse is distorted and can break into sev-
eral bubbles. For appropriate feedback strengths that exceed
thresholds, an increasing number of additional external cavity
modes appear as mode-antimode pairs in saddle node bifurca-
tions. Evaluation, with help of DDE-biftool, of Hopf bifurcations in
dependence of magnitude and phase of the feedbacks leads to an
understanding of system behavior. In the numerical simulations,
the scenario of transition to chaotic behavior from destabilization
of relaxation oscillations in Hopf bifurcations to transitions into
chaos in dependence of feedback phase was obtained. Thus, bi-
furcation analysis indicates that various regimes like CW, self-
pulsations, period doubling, torus and chaos can occur in a system
of semiconductor lasers with active medium quantum dots under
se influence of double cavity optical feedback. We believe that our
work provides a good basis for future study and, in particular,
provides some pointers for more detailed investigations of appli-
cations of such devices both for stabilization of laser emission by
external cavities and for chaos based communications where
appropriate.
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