IMPEDANŢMETRU CU REZONANȚĂ SIMULATĂ ÎN COORDONATE CARTEZIENE

Autori: Irina BOSTAN, Victor DOROS,

Universitatea Tehnică a Moldovei

Abstract

The paper contains the solving of the problem of measuring the active and the reactive components of impedance in Cartesian coordinates by the method of simulated resonance. The base serial resonance circuits and the U - Commanded Cartesian coordinates impedance simulator with independent control of active and reactive components of impedance are presented. The proposed measuring algorithm ensures equilibration of the measuring circuit in two operations.

Cuvinte-cheie: impedanttmetru, convertor, componenta activă, componenta reactivă, semnal de referință, semnal de dezechilibru.

1.Introducere

Utilizarea metodei de măsurare a impedanţei bazate pe efectul rezonanței simulate [1] deschide perspective noi pentru realizarea impedanţmetrelor de precizie înaltă. Principiul de funcţionare al acestor dispozitive este bazat pe metoda de măsurare cu echilibrare, în care impedanța măsurată se compară cu o impedanță - etalon reglabilă reprodusă de un simulator de impedanță (SIM) şi reglarea acesteia până la atingerea stării de zero în circuitul de măsurare (echilibru). Evident, precizia măsurării în aceste dispozitive este determinată în primul rând de precizia elementului de referință, iar posibilităţile de realizare practică a impedanţmetrelor şi algoritmii de măsurare depind de simplitatea şi flexibilitatea acestuia.

Sunt cunoscute diferite variante de implementare practică a metodei: în circuite rezonante de tip serie şi de tip paralel, în coordonate polare şi în coordonate Carteziene, cu simulatoare de impedanţă comandate în curent şi comandate în tensiune, etc.

În impedanţmetre cu rezonanţă simulată în coordonate Carteziene în calitate de element de referinţă se utilizează simulatoare de impedanţă în coordonate Carteziene (C-SIM), realizate pe bază de convertoare de impedanță. Faţă de ele sunt înaintate o serie de cerințe, cele mai importante dintre care sunt următoarele:

- Eroare mică şi stabilitate înaltă a impedanţelor reproduse;
- Posibilitatea reproducerii impedanțelor cu orice caracter;
- Reglarea independentă a componentelor impedanței reproduse;
- Valoarea cunoscută şi garantată a erorii sistematice a impedanţei reproduse;
- Comandă digitală a caracterului şi valorilor componentelor impedanței reproduse;
- Lipsa elementelor reactive reglabile (condensatoare variabile, magazine de inductanţă şi capacitate, etc.).

2. Circuitul de măsurare cu rezonanță simulată serie

Circuitul de măsurare cu rezonanță serie (Figura 1.) [2] conține generatorul de semnal 1, rezistorul 2, obiectul măsurat 3 , indicatorul de nul 4 și convertorul de impendanță 5 .

În procesul măsurării se reglează mărimile de referință $\mathrm{Z}_{\mathrm{r} 1} \ldots \mathrm{Z}_{\mathrm{rd}}$ și, prin intermediul lor, - impedanța de referinț̣ă Z_{R} pînă la îndeplinirea condiției de echilibru al circuitului de măsurare, care poate fi egalitatea cu zero a tensiunii $\mathrm{U}_{\mathrm{de}}\left(\mathrm{U}_{\mathrm{de}}=0\right)$.

$$
\begin{equation*}
\left(\mathrm{R}_{\mathrm{X}}+\mathrm{R}_{\mathrm{R}}\right)+\mathbf{j}\left(\mathrm{X}_{\mathrm{X}}+\mathrm{X}_{\mathrm{R}}\right)=0 \tag{1}
\end{equation*}
$$

unde: R_{X} și R_{R} - componentele active ale impedanței necunoscute și respectiv de referință;
X_{X} și X_{R} - componentele reactive ale impedanței necunoscute și respectiv de referință.

Figura 1. Circuitul de măsurare cu rezonanță simulată serie

> Soluția ecuației (1):

$$
\begin{equation*}
\mathrm{R}_{\mathrm{X}}=-\mathrm{R}_{\mathrm{R}} ; \mathrm{X}_{\mathrm{X}}=-\mathrm{X}_{\mathrm{R}} \tag{2}
\end{equation*}
$$

La sfirrșitul procesului de măsurare conform (2) componentele activă R_{X} și reactivă X_{X} ale impedanței măsurate sunt egale, respectiv, cu componentele activă R_{R} și reactivă X_{R} ale impedanței de referință cu semne opuse și pot fi determinate din dependențele cunoscute ale acestora de impendanțele reale $\mathrm{Z}_{\mathrm{r} 1} \ldots \mathrm{Z}_{\mathrm{rn}}$:

$$
\begin{align*}
& \mathrm{R}_{\mathrm{X}}=-\mathrm{R}_{\mathrm{R}}=f_{1}\left(\mathrm{Z}_{\mathrm{r} 1} \ldots \mathrm{Z}_{\mathrm{rn}}\right) \tag{3}\\
& \mathrm{X}_{\mathrm{X}}=-\mathrm{X}_{\mathrm{R}}=f_{2}\left(\mathrm{Z}_{\mathrm{r} 1} \ldots \mathrm{Z}_{\mathrm{rn}}\right) \tag{4}
\end{align*}
$$

unde: f_{l} - dependența funcțională a componentei R_{R} de mărimile $\mathrm{Z}_{\mathrm{r} 1} \ldots \mathrm{Z}_{\mathrm{rn}}$;
f_{2} - dependența funcțională a componentei X_{R} de mărimile $Z_{r 1} \ldots Z_{r n}$.

3. Simulatorul de impedanţă în coordonate Carteziene

Simulatorul de impendanță în coordonate Carteziene [3] poate fi utilizat pentru reproducerea impedanțelor cu orice caracter şi cu posibilitatea reglării independente a componentelor activă şi reactivă.

Simulatorul se explică prin circuitul din figura 1.

Figura 2. Simulatorul de impedanță în coordonate Carteziene

Simulatorul de impedanță (Figura 2) conţine amplificatorul operaţional 1, rezistoarele 2 și 4 , clemele 3 și 5, amplificatoarele diferențiale 6 și 12, divizoarele de tensiune 7 și 8 , amplificatoarele programabile 9 și 10 , divizorul 11.

Impedanţa Z_{i} reprodusă de convertor la clemele 3 şi 5 se determină:

$$
\begin{equation*}
\boldsymbol{Z}_{\boldsymbol{i}}=\boldsymbol{U}_{\boldsymbol{i}} / \boldsymbol{I}_{\boldsymbol{i}}=K_{d l} \cdot\left(K_{b r} \cdot K_{l r}-\boldsymbol{j} K_{b x} \cdot K_{l x}\right) \cdot R \equiv R_{i}+\boldsymbol{j} X_{i} \tag{5}
\end{equation*}
$$

unde: $\mathrm{R}_{\mathrm{i}}=\mathrm{K}_{\mathrm{d} 1} \cdot \mathrm{~K}_{\mathrm{br}} \cdot \mathrm{K}_{\mathrm{lr}} \cdot \mathrm{R}$,
$X_{i}=-K_{d 1} \cdot K_{b x} \cdot K_{l x} \cdot R$, prezintă, respectiv, componentele activă şi reactivă ale impedanţei reproduse.
După cum rezultă din (5), selectarea benzii de valori a componentelor activă şi reactivă ale impedanței reproduse se efectuează prin reglarea în trepte a coeficienţilor de divizare $\mathrm{K}_{\mathrm{br}}, \mathrm{K}_{\mathrm{bx}}$ ai divizoarelor 7 şi respectiv 8 , iar reglarea lină a acestor componente - prin reglarea respectivă a factorilor de transfer K_{lr}, $\mathrm{K}_{1 \mathrm{~lx}}$ ai amplificatoarelor 9 şi 10 . Valoarea maximă a componentelor impedanței reproduse este determinată de valoarea factorului de transfer $\mathrm{K}_{\mathrm{d} 1}$ al amplificatorului 6.

4. Impedanțmetrul în coordonate Carteziene

Impedanțmetrul în coordonate Carteziene [4] poate fi utilizat pentru măsurarea cu precizie înaltă a componentelor impedanţei.

Structura impedanțmetrului se explică prin figura 3.

Figura 3. Impedanțmetrul în coordonate Carteziene
Impedanţmetrul conţine generatorul de semnal 1, rezistorul 2, clemele 3 şi 4 , convertorul de impendanță 5, amplificatorul 6 , comparatoarele 7 și 8 , blocul de comandă 9 , blocul de formare al semnalului 10.

Obiectul măsurat cu impedanţa Z_{x} se conectează la clemele 3 şi 4 . Convertorul de impedanţă 5 reproduce la ieşiri o impedanţă de referinţă Z_{R}, care împreună cu impedanța măsurată Z_{X} formează un circuit rezonant în serie, alimentat cu curent de generatorul 1 prin rezistorul 2. Amplificatorul 6 amplifică semnalul de dezechilibru al circuitului rezonant, iar comparatorul 7 îl transformă în impulsuri dreptunghiulare, care servesc ca semnal de dezechilibru $U_{\text {de }}$ pentru blocul de comandă 9. Tensiunea în punctul de referinţă al convertorului 5 , transformată în impulsuri dreptunghiulare de către comparatorul 8 , constituie semnalul de referinţă $U_{\text {ref }}$ pentru blocul de comandă 9 , care efectuiază echilibrarea circuitului rezonant prin intermediul reglării componentelor activă R_{R} şi reactivă X_{R} ale impedanței Z_{R} reproduse de convertorul 5. Blocul de formare a semnalului 10 formează la ieşire un semnal de comandă cu tensiunea generatorului 1 , care asigură o mărime constantă a semnalului de referinţă $U_{\text {ref. }}$. Aceasta asigură căderi de tensiune constante pe impedanţa măsurată şi pe cea reprodusă de convertor la variaţia impedanței măsurate şi, ca urmare, sensibilitate şi precizie constante. La prima etapă de echilibrare blocul 9 reglează lin componenta activă R_{R} pînă la obţinerea unui defazaj de 0° sau 180° între semnalele $U_{\text {de }}$ şi $U_{\text {ref. }}$. La etapa a doua se reglează lin componenta reactivă X_{R} pînă la trecerea defazajului sus-numit de la valoarea 0° la valoarea 180° sau de la valoarea 180° la valoarea 0°. La finalizarea procesului de măsurare, blocul de comandă 9 determină valorile componentei active $R_{X}=-R_{R}$ şi componentei reactive $X_{X}=-X_{R}$ ale impedanţei măsurate. Independent de valoarea impedanţei măsurate, blocul

10 reglează tensiunea generatorului şi menţine o valoare constantă a căderii de tensiune pe impedanţa Z_{X}, ceea ce asigură sensibilitate constantă a circuitului de măsurare şi, ca urmare, precizie constantă de măsurare

5. Simularea impedanțmetrului în programul MULTISIM

Figura 4. Circuitul modelat în programul MULTISIM
Conform rezultatelor obţinute la simularea circuitului (Fig. 4), se observă că la variaţia rezistenței R_{9}, pînă la starea de echilibru semnalul de dezechilibru este în antifază cu cel de referinţă (Fig. 5.a), după starea de echilibru aceste semnale sunt în fază (Fig. 5.b), iar în starea de echilibru total valoarea semnalului de dezechilibru tinde spre zero (Fig. 5.c). Aceasta corespunde pe deplin principiilor teoretice de funcţionare a simulatorului.

Figura 5. Oscilogramele circuitului de măsurare.
a - oscilograma semnalelor pînă la starea de echilibru, b - după starea de echilibru, c - în starea de echilibru)

6. Bibliografie

1. Brevet de invenție MD 489, autor V. Nastas. Metodă de măsurare a componentelor impendanței. Chișinău, 2011
2. Brevet de invenție MD 2248, autor V.Nastas. Dispozitiv pentru măsurarea componentelor impedanței. Chișinău, 2001.
3. Brevet de invenție MD 818, autori V. Nastas, P. Nicolaev. Convertor de impedanță. Chișinău, 2014
4. Brevet de invenție MD 873, autori V. Nastas, P. Nicolaev. Impedanțmetru. Chișinău, 2014
