

2009, Volume T135, pag. 014046

The luminescent properties of a ZnGa₂O₄ spinel doped with Eu ³⁺ and Er³⁺ ions

M. Vasile, P. Vlazan, P. Sfirloaga, I. Grozescu, N. M. Avram, E. Rusu

https://doi.org/10.1088/0031-8949/2009/t135/014046

Abstract

Nanophosphor of ZnGa₂O₄:Eu³⁺ and Er³⁺ were synthesized by the hydrothermal method. ZnGa₂O₄ is an intrinsic blue light emitter with a wavelength peak of approximately 608 nm depending on the gallium ratio. A luminescent analysis of the materials shows that the rare earth ions are localized in the defect sites at the crystallite boundaries. The emission spectra of the europium-doped samples are characterized by an intense emission in the red region due to the ${}^{5}\text{Do}{}^{-7}\text{F}_{1, 2}$ transitions of Eu³⁺ ions, whereas in the case of erbium doping the highest intensity corresponds to the green light emission due to the $4I_{13/2}-4I_{15/2}$ transitions of the Er³⁺ ions. These powders were analyzed by x-ray diffraction (XDR) and characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDAX) and atomic force microscopy (AFM). Photoluminescence (PL) and

2009, Volume T135, pag. 014046 photoluminescence excitation (PLE) measurements were made with a conventional lamp as an excitation source.