International Semiconductor Conference. Proceedings. CAS 2010, 19th Edition 11-13 October 2010, Sinaia, Romania pp. 251-254

Impact of light quantum in Rapid Photothermal Diffusion of Zn IN GaAs

S. T. Shishiyanu and T. S. Shishiyanu

https://doi.org/10.1109/SMICND.2010.5650620

Abstract

The experimental results of the Rapid Photothermal Diffusion (RPD) of Zn in GaAs and p-n junction formation, model and role of quantum factor in this process are presented in this paper. The p-n junctions with depth of 0.2-1.2µm have been obtained by RPD at 600-950 °C for 6-60s diffusion time for solar cells and microelectronic application. The diffusion coefficients and activation energies of the RP-enhanced diffusion at low (N₀ <;4×10¹⁹ cm ⁻³) and high (N₀ >1×10²⁰ cm⁻³) concentrations of Zn in GaAs were analysed. The activation energy of RP-diffusion is lower than that of the conventional furnace diffusion and diffusion coefficient is higher by 1-2 orders of magnitude. The proposed model and calculated wavelength dependence of RP-diffusion coefficient, D(λ), are in accordance with experimental results.

References

^{1.} R. Singh, M. Fakhruddin, K.F. Poole, "Rapid photothermal processing as a semiconductor manufacturing technology for the 21st century", Applied Surface Science, 168, pp. 198-203, 2000. Show Context

^{2.} Z.I. Alferov, V.M. Andreev, V.D. Rumyantsev, "III-V Solar Cells and Concentrator Arrays", in Book High-Efficient Low-Cost Photovoltaics, Edit by Springer, 140, pp. 101-141, 2009. Show Context

³ .Masafumi Yamaguchi, "Radiation-resistant solar cells for space use", Solar Energy Material & Solar Cells, 68, pp.31-53, 2001. (Pubitemid 32871297) Show Context

^{4.} J. Kwo, M. Hong, "Research advance on III-V MOSFET electronics beyond Si CMOS", Journal of Crystal Growth, 311, pp. 1944-1949, 2009. Show Context

International Semiconductor Conference. Proceedings. CAS 2010, 19th Edition 11-13 October 2010, Sinaia, Romania pp. 251-254

5. Feng Zhao, at al, "Improved thermal stability of AlGaAs/GaAs/AlGaAs single quantum well by grown on Zn-doped GaAs", Thin Solid Films, 426, pp. 186- 190, 2003. Show Context

6. I.K. Sinischuk, T.S. Shishiyanu, G.E. Chiaka, "Radiation stimulated diffusion of atoms in metal - semiconductor contacts", J. Physics and Technique of Semiconductors, 12(4), pp. 674-677, 1985. Show Context

7. Yicheng C. Lu, T.S. Kalkur, C.A. Paz De Araujo, "Rapid thermal diffusion of Zn into GaAs", Journal of Electronic Materials, 19(1), 1989.

Show Context

8. T.S. Shishiyanu, I.K. Sinischuk, S.T. Shishiyanu, I.I. Pocaznoi, V.V. Cheban, "Radiationenhanced diffusion process in compound semiconductors (GaAs, InP)", VIII Internat. Conf. on Ternary and Multinary Compounds, 2, pp. 391-397, Chisinau, 1991.

Show Context

9. S.T. Sisianu, "Nonconventional technology in microelectronics with photon annealing and stimulated diffusion", Edit by Tehnica, Chişinău, p. 221, 1998.

Show Context

10. B.M. Ardishev, M.B. Ardishev, "Activation and distribution of Si implanted in GaAs under isothermal radiation annealing", Physics and Technique of Semiconducors(rus), 32(10), pp. 1153-1157, 1998.

Show Context

11. B.M. Ardishev, M.B. Ardishev, "Radiation annealing of GaAs implanted by sulphur", Physics and Technics of Semiconducors (rus), 32(10), pp. 269-271, 2002. Show Context

12. R. Mosca, P. Bussei, S. Franchi, P. Frigeri, and E. Gombia, "Be diffusion in molecular beam epitaxygrown GaAs structures", J. Appl. Phys, 93(12), pp. 9709-9717, 2003. Show Context

13. S. Shishiyanu, "RTP diffusion and junction formation in Si and GaAs", 14 International Conf. on Advanced Thermal Processing of Semiconductors - RTP-2006, pp. 199-204, Japan, 2006. Show Context

14. I.B. Snapuro, N.N. Tkachenko, "Mechanism of non linear diffusion in semiconductors", Technical Physics Letters, 50(3), pp. 111-112, 1989.