

2018, Volume 5, Number 6, pag. 066205

Up-conversion luminescence in samarium doped ZnAl₂Se₄ single crystals

V. V. Zalamai, N. N. Syrbu, E. V. Rusu, A. Tiron, N. P. Bejan

https://doi.org/10.1088/2053-1591/aacb68

Abstract

Photoluminescence spectra of ZnAl₂Se₄:Sm²⁺ due to the processes of charge carriers recombination from levels ⁵Dj, ⁵Lj, ⁵Gj and ⁵Hj (4f⁵5d¹) on levels ⁷Fj of samarium ions were investigated. The broad photoluminescence band at energies 1.6–1.9 eV due to optical transitions of electrons from 4f shell to 1s of samarium ions level was discovered. Emitted energy of it was absorbed by transitions from ⁷F_j to ⁵D_j levels. An up-conversion process—electron excitation from ⁷F_j levels to ⁵D₀, ⁵D₁, ⁵D₂ levels with simultaneous electron transitions to higher energy states 5D3, 5D4, 5Lj, 5Gj, 5Hj with subsequent recombination to ⁷F_j levels with energy emission in short-wavelength region were found out and investigated.