

The band structure of birefractive CdGa₂S₄ crystals

I. G. Stamov, N. N. Syrbu, V. I. Parvan, V. V. Zalamai, I. M. Tiginyanu

https://doi.org/10.1016/j.optcom.2013.07.032

Abstract

In this paper, we report on the spectral dependence of $\Delta n=n_o-n_e$ for CdGa₂S₄ single crystals for shorter and longer wavelengths than the isotropic wavelength $\lambda_0=485.7$ nm (300K). It was established that Δn is positive at $\lambda > \lambda_0$ and it is negative in the spectral range $\lambda < \lambda_0$. The isotropic wavelength λ_0 exhibits blue spectral shift with temperature decreasing. The ground and excited states of three excitonic series A, B and C with binding energies of 53meV, 52meV and 46meV, respectively, were found out at 10K. The effective masses of electrons for k=0 were derived from the calculation of excitonic spectra: m_c^{\parallel} (E||c)=0.21m₀ and m_c^{\perp} (E \perp c)=0.19m₀. The holes masses are equal to 0.59m₀ and 0.71m₀ for E||c and E \perp c, respectively. The value of valence bands splitting, V₁–V₂, by crystalline field equals 24meV, and V₂–V₃ splitting due to the spin–orbital interaction equals to 130meV. The optical functions *n*, *k*, ε_1 and ε_2 for E \perp c and E/c polarizations were calculated by means of Kramers–Kronig analyses in the energy interval 3–6eV. The

Optics Communications Volume 309, 15 November 2013, Pages 205-211

evidenced features are discussed taking into account the results of new theoretical calculations of $CdGa_2S_4$ band structure.