

I. G. Stamov, N. N. Syrbu, S. B. Khachaturova, SCHOTKY BARRIER ELECTRIC FIELD EFFECT ON ZnP₂ OPTICAL SPECTRA, *Fizika Tverdogo Tela*, 1984, Volume 26, Issue 8, 2468–2472

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details: IP: 178.168.20.213 January 6, 2021, 16:37:57

1984	ФИЗИКА	ТВЕРДОГО ТЕЛА	Том 26, в. 8
1984	SOLIDS	STATE PHYSICS	Vol. 26, № 8

УДК 621.315.592

ВЛИЯНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ БАРЬЕРА ШОТТКИ НА ОПТИЧЕСКИЕ СПЕКТРЫ ДИФОСФИДА ЦИНКА

И. Г. Стамов, Н. Н. Сырбу, С. Б. Хачатурова

Исследовано влияние электрического поля барьера Шоттки Au—ZnP₂ на водородоподобные спектры отражения и поглощения в дифосфиде цинка. Установлено влияние поля на контур экситонных спектров отражения, а также на спектры фотоответа, обусловленные участием в поглощении экситонов и биэлектронно-примесного комплекса.

В ряде экспериментальных и теоретических работ [¹⁻⁴] показана возможность изучения экситонных эффектов на контакте металл—полупроводник. Барьер Шоттки позволяет получать высокие и управляемые поля в области пространственного заряда (ОПЗ). В связи с этим представляет интерес изучение влияния электрического поля барьера на тонкую структуру линий поглощения и отражения кристаллов моноклинного дифосфида цинка.

В области края поглощения ZnP₂ обнаружена сходящаяся в длинноволновую сторону серия линий, описываемая водородоподобной зависимостью с отрицательной приведенной массой [⁵⁻⁸]. Обратная водородоподобная серия (OBC) линий поглощения в ZnP₂ обусловлена биэлектронными состояниями [⁷]. Взаимодействие биэлектрона как целого с положительно заряженным центром приводит к образованию прямых водородоподобных серий (ПВС), расположенных у головных линий поглощения OBC с длинноволновой области.

С коротковолновой стороны обратной водородоподобной серии проявляются экситонные линии поглощения и отражения. Экситонные оптические спектры поляризованы: в поляризации Е || с разрешены две серии экситонных состояний А и С, в поляризации Е _ с — запрещенный экситон (B) [^{5, 6, 8-10}].

1. Методика эксперимента

Для изучения влияния электрического поля на OBC и экситонные состояния в дифосфиде цинка использовался контакт Au—ZnP₂. Барьеры Шоттки получались методом термического распыления или электрохимического осаждения иленки золота на химически полированную поверхность кристаллов. При $d \sim 150$ Å высота барьера составляла ~ 1.0 эВ. Монокристаллы ZnP₂ *п*-типа проводимости обладали концентрацией свободных носителей заряда $2 \cdot 10^{14} - 10^{16}$ см⁻³. Коэффициенты идеальности барьеров, напыленных в вакууме, принимали значения 1.07 - 1.17 и осажденных электрохимическим способом 1.02 - 1.07. Ширина области пространственного заряда составляла $\simeq 10^{-4}$ см. Коэффициент поглощения в области экситонных состояний и OBC в Е $\parallel c$ изменяется в пределах $10^3 - 10^4$ см⁻¹. Поэтому в поляризации Е $\parallel c$ оптические свойства определяются узкой приповерхностной областью, параметры которой управляются барьером Шоттки. Электрическое поле прикладывалось по направлению $\mathbf{F} \perp c$ и совпадало с направлением распространения света.

Как было показано ранее, характеристики барьеров металл—ZnP₂ в предпробойной области напряжений и температурах >80 К описываются в рамках теории термоэлектронной эмиссии электронов над барьером [¹¹]. Поэтому максимальную величину напряженности электрического поля в барьере можно определить по известной формуле

$$E_m = \left[\frac{2qn_0\left(\varphi_0 - qU\right)}{\varepsilon}\right]^{1/2},$$

где n_0 — концентрация свободных носителей заряда; φ_0 — высота потенциального барьера, отсчитанная от дна зоны проводимости полупроводника при U=0; U — приложенное напряжение; ε — диэлектрическая проницаемость полупроводника.

2. Экспериментальные результаты и их обсуждение

а) Влияние электрического поля. Спектр отражения в области A- и C-экситонных резонансов и микросерии (ПВС) у головной линии $n^0 =$ =4 OBC для монокристаллов ZnP₂ при 77 К имеют обычный вид, представленный на рис. 1, кривая I. В результате нанесения на кристалл золотого контакта форма спектра меняется (кривая 2, U=0). Наблюдается рост отражательной способности коротковолнового плеча. При подаче на контакт обратного смещения —0.2 В коротковолновое плечо растет и становится интенсивнее длинноволнового. Дальнейший рост величины обратного смещения приводит одновременно с ростом коротковолнового плеча к уменьшению величины и уширению

Рис. 1. Спектры отражения в области n=1 A- и C-экситонов.

1-от свободной поверхности ZnP₂; 2-9от контакта Au-ZnP₂ при смещениях 0, -0.2, -0.4, -0.6, -1.0, -1.5, -2.0, -5.0 В соответственно, T=77 К.

Рис. 2. Модулированные по длине волны спектры отражения в области n=2 и 3 A- и C-экситонов.

R' — от свободной поверхности ${\rm ZnP}_2$, a-e — барьера Шоттки Au— ${\rm ZnP}_2$ при U=0, —0.3, —0.6, —1.0 В соответственно, T=77 К.

резонансного пика отражения. При полях ~ 10^5 В/см экситонные спектры отражения практически не наблюдаются. Увеличение отражательной способности коротковолнового плеча создает кажущееся смещение минимума отражения в длинноволновую сторону. Изменение спектров отражения в электрическом поле обусловлено оптической интерференцией в безэкситонном мертвом слое (MC) так же, как и в CdS—Cu, ZnSe—Cu [¹⁻⁴]. Особенно наглядно эффект интерференции проявляется в спектрах модулированного по длине волны отражения: с коротковолновой стороны основных состояний A и C при определенных смещениях четко выделяются дополнительные особенности в виде полуволн A', A'' и т. д.

При изменении обратного смещения от 0 до —7 В электрическое поле F_s изменяется в пределах 10^4 — 10^5 В/см. Критическое поле $F_{\rm kp}$, необходимое для ионизации экситона в ZnP₂, определено из условия $qF_{\rm kp}r_{\rm экс}=R$ (R — энергия связи свободного экситона, $r_{\rm экс}$ — радиус экситонной орбиты n=1) и составляет $F_{\rm xp}=3\cdot10^4$ В/см. Сравнение величин F_s и $F_{\rm kp}$ допускает возможность примене-

ния в данном случае модели с мертвым приповерхностным слоем. В рамках модели МС при увеличении приложенного напряжения расширяется область пространственного заряда, возрастает электрическое поле и изгиб зон у поверхности полупроводника, что приводит к росту глубины мертвого слоя, обусловленного полевой диссоциацией. Наблюдаемое при напряжении смещения —5 В размытие структуры в спектре отражения можно объяснить увеличением параметра диссипативного затухания и длинноволновым сдвигом края основного поглощения в электрическом поле. Для того чтобы показать, что основной областью длинноволнового сдвига является ОПЗ, анализировались спектры фотоответа Au—ZnP₂, модулированные по длине волны (рис. 2). Для сравнения представлены спектры отражения свободной поверхности (кривая R') и фотоответа Au—ZnP₂ (кривые a—e), модулированные по длине волны, в области экситонных состояний n=2 и 3. По энергетическому положению особенностей n=2 и 3 A- и C-экситонных серий при полях $F_s < F_{xp}$, когда структура полос

1-9 — при 0, -0.5, -1.0, -1.5, -2.0, -2.5, -3.0, -4.0 и -5.0 В соответственно, T=77 К.

отражения еще наблюдается, рассчитаны пороговые энергии экситонных состояний и их уменьшение с ростом электрического поля. Последнее связано с длинноволновым сдвигом края основного поглощения в электрическом поле.

Изменения в спектрах отражения и модулированного по длине волны отражения в области OBC свидетельствуют о том, что на спектрах OBC также сказывается наличие мертвого слоя на поверхности. МС формирует коэффициент отражения и изменяет долю поглощенной энергии на рассматриваемой частоте. Зависимость спектрального распределения фотоответа диодов Au-ZnP, от приложенного смещения (рис. 3) показывает, что максимумы фотоэдс коррелируют со спектрами отражения. С ростом электрического поля происходит уширение пиков фотоэдс, что вызвано диссоциацией состояния, обусловливающего OBC. При отсутствии смещения в фотоэдс обнаруживаются все линии OBC $(n^0=9$ и 10 видны слабо). Энергетическое положение линии $n^0=4$ OBC в поляризации Е || с совпадает (перекрывается) с n=1А-экситонной серии. В спектрах фотоэдс тонкая структура линий ПВС у каждой головной линии ОВС детально не проявляется даже у наиболее интенсивной линии n⁰=4. Размытие ПВС обусловлено тем, что электрическое поле $F_s \sim 10^4 {
m B/cm}$ даже без смещения превышает критическое поле F_{кр} существования ПВС. Действительно, энергия связи биэлектрона как целого с положительно заряженным центром достаточно мала (~20 мэВ). Исчезновение линий ОВС наблюдается начиная с больших значений n⁰.

б) Влияние температуры. В температурном интервале 2— 300 К для прямых и обратных водородоподобных серий наблюдаются две области изменения пределов сходимости: 2—77 К и 77—200 К. Пределы сходи-

Серия	п, см ^{-з}	6 · 10 ¹⁴		2 · 10 ¹⁶		2 · 10 ¹⁷		1018	
	<i>т</i> , к	<i>Еg</i> , эВ	∆ <i>Е</i> , мэВ	<i>Е</i> _g , эВ	∆Е, мэВ	<i>Еg</i> , эВ	∆Е, м В	<i>Е</i> _g , эВ	∆Е, мәВ
A	77	1.584	+10.0	1.584		1.584		1.585	
	2	1.594				-			
С	77	1.599	14 5	1.599		1.598		1.601	
	2	1.601	+1.5			—			
В	77	1.587	+8.6	1.587	+9.4	1.587	+9.4	1.587	+9.6
	2	1.596		1.596		1.596		1.598	
OBC	77	1.508	-2.4	1.507	-2.4	1.507	-1.8	1.505	-1.4
	2	1.506		1.505		1.505		1.504	

Энергии пределов сходимости прямых (экситонных) и обратной водородоподобной серий линий в оптических спектрах ZnP_2 при различных концентрациях и температурах

мости экситонных серий и ОВС для образцов с различной концентрацией носителей, измеренных при температуре 2 и 77 К, представлены в таблице. При изменении температуры от 2 до 77 К пределы сходимости (E_g) экситонных серий A, B и C уменьшаются соответственно на 10, 1.5 ± 0.5 и 8.5 ± 0.5 мэВ. Это

обусловлено тем, что валентные зоны V₁, V₂ и V₃ смещаются вверх (условно, согласно зонной схеме, рис. 4, а), а нижняя зона проводимости C₁ смещается вниз. При тех же изменениях температуры (т. е. от 2 до 77 К) предел сходимости ОВС увеличивается на (2.5 ± 0.5) мэВ. В энергетической схеме зон смещение зоны C₁ вниз ведет к смещению донорного уровня вниз и к увеличению зазора $C_1 - C_2$. При росте температуры уменьшение зазора V_1 (V_2 , V_3)— C_1 и увеличение энергетического интервала $C_1 - C_2$ наблюдается для образцов с разконцентрацией носителей личной (см. таблицу). При этом при 2 К увеличение концентрации приводит к более слабому изменению предела сходимости ОВС. На рис. 4, б представлено изменение энергетического положения линии n=1 A- B- и C-экситонных состояний от температуры.

В интервале 2—100 К изменение энергетического положения линий слабое,

a — зонная структура и уровни экситонов и биэлектрона в ZnP₂; 6 — температурные зависимости: 1-3 — n=1 A-, B- и C-виситонов соответственно, $2 - n^{\circ} = 4$ OBC, $5 - E^{OBC}$, $4 - R^{OBC}$.

в интервале 100—300 К линии смещаются с большим градиентом. Из рис. 4, 6 следует также, что постоянная Ридберга и предел сходимости ОВС уменьшается с ростом температуры. Повышение температуры приводит к тому, что линии поглощения ОВС начинают размываться и исчезают, начиная с высоких членов серии. При температуре 145 К отсутствуют линии $n^0=9$, 10, 11. Компоненты серии также исчезают с повышением температуры и при 150 К уже не наблюдаются. При температуре 191 К обнаруживаются только компоненты линии $n^0==6$ (очень слабые) и $n^0=5$ и 4. Полученные зависимости подтверждают значения постоянных Ридберга для ПВС у $n^0=4,5$ и 6.

Литература

- Киселев В. А. ФТП, 1979, т. 21, № 4, с. 1069—1074.
 Новиков Б. В., Павлов А. Б., Талалаев В. Г. ФТТ, 1981, т. 23, № 4, с. 1014—1021.
 Анохин С. Б., Новиков Б. В., Талалаев В. Г. ФТТ, 1980, т. 22, № 6, с. 1787—1791.
 Бенеманская Г. В., Новиков Б. В., Чередниченко А. Е. ФТТ, 1977, т. 19, № 5, с. 1389—
- 1394. [5] Сырбу Н. Н., Стамов И. Г., Радауцан С. И. Изв. АН МССР, Сер. физ.-техн. и мат. наук,
- 1981, № 3, c. 85-86.
- [6] Сырбу Н. Н., Стамов И. Г., Радауцан С. И. ДАН СССР, 1982, т. 262, № 5, с. 1138-1142.
- [7] Селькин А. В., Стамов И. Г., Сырбу Н. Н., Уманец А. Г. Письма в ЖЭТФ, 1982, т. 35. № 2, c. 51-53.
- [8] Сырбу Н. Н., Стамов И. Г., Радауцан С. И. Изв. АН МССР, Сер. физ. наук, 1982, № 1, с. 27-34.
- [9] Певиов А. Б., Пермогоров С. А., Селькин А. В., Сырбу Н. Н., Уманец А. Г. ФПП, 1982. т. 16, № 8, с. 369—371. [10] Соболев В. В., Козлов А. И., Тычина И. И., Романюк Н. А., Смоляренко Э. М. Письма
- в ЖЭТФ, 1981, т. 34, с. 115—118.
- [11] Syrbu N. N., Stamov I. G., Hachaturova S. B., Umanetz A. G. Proc. of the 1 Inter. Symp. on the "Physics and chemistry of II-V compounds", 1980, p. 247-250.

Кишиневский политехнический институт им. С. Лазо

Поступило в Редакцию 14 июня 1982 г. В окончательной редакции 16 апреля 1984 г.