

N. N. Syrbu, N. D. Rabotinskii, G. I. Stratan, S. B. Khachaturova, Optical properties of CuAlS₂ near the fundamental absorption edge, *Fizika Tverdogo Tela*, 1988, Volume 30, Issue 9, 2865–2867

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details: IP: 178.168.20.213 January 5, 2021, 18:29:51

руженного эффекта, измеренный на толстой пластине, столь же информативен (кривая 2), как и снятый на тонкой эпитаксиальной пленке.

Эффект дестабилизации ДС при воздействии света объясняется изменением магнитоупругого состояния образцов. В пользу магнитоупругого механизма перестройки ДС свидетельствует характер светоиндуцированных локальных изменений ДС, а также эксперимент по приклейке пластин. Воздействие света вызывает упругую деформацию поверхностного слоя образцов. В случае пленок поверхностным слоем является вся пленка ИЖГ. Преимущественно поверхностный характер эффекта обусловливает достаточное быстродействие, ограничиваемое магнитным (упругим) последействием.

Изменение магнитоупругого состояния исследованных образцов при воздействии света можно объяснить фотодеформационным механизмом. Однако определение существенности вклада фотодеформационного механизма в наблюдаемые явления и выявление конкретной природы требуют дальнейших исследований.

Другим механизмом изменения магнитоупругого состояния образпов при воздействии света является нагрев поверхностного слоя. При однородном нагреве, как отмечалось выше, эффект перестройки ДС не наблюдается. Поверхностный термодеформационный механизм упругих напряжений также объясняет дестабилизацию ДС, переходящую в перестройку при достаточной интенсивности света.

В заключение отметим, что возможность изучения оптического спектра поглощения на основе обнаруженного эффекта интересна, особенно при использовании перестраиваемых лазеров.

Литература

- Магнитные полупроводники. Труды ФИАН, 1982, т. 139, 172 с.
 Коваленко В. Ф., Нагаев Э. Л. УФН, 1986, т. 148, № 4, с. 561-602.
- [3] Тимофеева В. А. Рост кристаллов из растворов-расплавов. М.: Наука, 1978. 267 c.
- [4] Веселаго В. Г., Владимиров И. В., Дорошенко Р. А., Сетченков М. С. Препринт ИОФАН, № 56. М., 1987. 61 с.
 [5] Власко Власов В. К., Дедух Л. М., Никитенко В. И. ЖЭТФ, 1976, т. 71, № 6,
- c. 2291—2304.

Отдел физики и математики БФ АН СССР Уфа

Поступило в Редакцию. 11 апреля 1988 г.

УДК 621.315.592

Физика твердого тела, том 30, в. 9, 1988 Solid State Physics, vol. 30, N 9, 1988

ОПТИЧЕСКИЕ СВОЙСТВА CuAlS₂ В ОБЛАСТИ КРАЯ фундаментального поглощения

Н. Н. Сырбу, Н. Д. Работинский, Г. И. Стратан, С. Б. Хачатурова

CuAlS₂ — широкозонный полупроводник, кристаллизующийся в структуре халькопирита. Немногочисленные исследования оптических свойств этих кристаллов в области края собственного поглощения носят общий характер [1, 2] и недостаточны для того, чтобы проводить надежный анализ их энергетической зонной структуры.

В настоящей работе приведены результаты исследования спектров отражения монокристаллов CuAlS₂ в области энергий экситонных переходов и в собственной области (3-6 эВ) при температуре 77 К. Исследованные кристаллы CuAlS₂ были получены методом химической транспортной реакции.

На рисунке, *а*, *б* показаны спектры отражения кристаллов CuAlS₂ при 77 К (поляризация Е || С и Е \perp С, направление распространения света К \perp С, где С — оптическая ось кристалла, параллельная отражающей грани). Обращает на себя внимание существование значительной анизотропии оптических свойств этих кристаллов. Так, в поляризации Е || С наблюдаются линии A_1 и A_1' с максимумами, расположенными вблизи энергий 3.516 и 4.773 эВ, а в поляризации Е \perp С — B_1 и B_1' при 3.664 и 4.909 эВ. Полоса C_1 в области 4.352 эВ неполяризована.

Спектры отражения кристаллов CuAlS₂ при 77 К (a, b) и структура энергетических зон CuAlS₂ в точке $\mathbf{K} = 0$ зоны Бриллюэна (a).

Согласно результатам теоретических расчетов зонной структуры кристаллов CuAlS₂ [³], выполненных во всей зоне Бриллюэна, минимум междузонного промежутка в точке $\mathbf{K}=0$ формируется прямыми разрешенными переходами $\Gamma_4 - \Gamma_1$ и ширина запрещенной зоны при 300 K равна 3.49 эВ. Поскольку линий A_1 , B_1 , C_1 , A_1' и B_1' обнаруживаются в области длинноволнового края собственного поглощения, естественно связать их с переходами в экситонные состояния, характеризующиеся главным квантовым числом n=1. Для определения параметров основных экситонных состояний в CuAlS₂ был проведен количественный расчет формы экситонных линий отражения. Хорошее согласие теории с экспериментом получено

Πυκ	Поляриза- ция	ħω ₀ , ∂Β	ћω _{LT} , мэВ	ћГ, мәВ	f • 10-4	Тип перехода
$ \begin{array}{c} A_1 \\ B_1 \\ C_1 \end{array} $	E C E⊥C E C E⊥C	3.534 3.696 4.390 4.398	2.3 3.0 3.5 2.6	46 93 94 87	1.3 1.5 2.9 1.9	$ \left. \begin{array}{c} \Gamma_{7} - \Gamma_{7} \left(V_{1} - C_{1} \right) \\ \Gamma_{6} - \Gamma_{7} \left(V_{2} - C_{2} \right) \\ \end{array} \right\} \\ \left. \Gamma_{7} - \Gamma_{7} \left(V_{3} - C_{1} \right) \end{array} \right. $
$\begin{array}{c}A_1\\B_1\end{array}$	E ∥ C E⊥C	4.980 5.119	4.1 4.3	62 36	2.9 3.1	$ \begin{vmatrix} \Gamma_7 - \Gamma_3 & (V_1 - C_2) \\ \Gamma_6 - \Gamma_3 & (V_2 - C_2) \end{vmatrix} $

Параметры экситонных состояний n=1 в CuAlS₂ при 77 К

в рамках модели классической кристаллооптики [4]. Полученные значения основных параметров экситонных резонансов n=1 в кристаллах CuAlS₂ приведены в таблице, где $\hbar\omega_0$ — резонансная энергия, $\hbar\omega_{LT}$ — продольно-поперечное расщепление, $\hbar\Gamma$ — затухание, f — сила осциллятора экситонного перехода.

На рисунке, в показана структура энергетических зон, поясняющая существование экситонных состояний в CuAlS₂, построенная на основе экспериментальных данных и теоретических расчетов [³].

Наличие прямых экситонных переходов позволило привлечь для изображения зонной схемы CuAlS₂, определяющей его оптические свойства в области края собственного поглощения, две зоны проводимости C_1 и C_2 и три валентные зоны V_1 , V_2 , V_3 (см. рисунок, e). Согласно теоретическим расчетам зонной структуры CuAlS₂ без учета спин-орбитального взаимодействия, максимум верхней валентной зоны V_1 локализован в центре зоны Бриллюэна и имеет симметрию Г4, а отщепленная за счет кристаллического поля зона V₂ — симметрию Г₅. Под влиянием спин-орбитального взаимодействия состояние Г₅ расщепляется на Г₆ и Г₇. Нижняя зона проводимости C_1 обладает симметрией Γ_1 , а следующая зона C_2 — симметрией Г3. Для объяснения экситонных состояний А1 и В1 можно привлечь две расщепленные из-за кристаллического поля валентные зоны V_1 , V_2 и зону проводимости C_1 . Тогда полосы A_1 и B_1 в спектрах отражения соответствуют переходам $\Gamma_7 - \Gamma_7$ (Е || С) и $\Gamma_6 - \Gamma_7$ (Е || С) и величина расщепления $\Delta_{\rm кр} = 0.162$ эВ (см. рисунок, в). Неполяризованное экситонное состояние C_1 можно объяснить переходами из отщеплений за счет снин-орбитального взаимодействия валентной зоны V_3 в зону про-водимости C_1 , т. е. переходами $\Gamma_7 - \Gamma_7$ (Е || C, Е \perp C), и величина расщепления $\Delta_{co} = 0.694$ эВ (см. рисунок, в). Поскольку в спектрах отражения проявляются только состояния n=1, энергии связи экситонов в CuAlS₂ не определены и энергетические зазоры Δ_{co} и Δ_{ho} рассчитаны с точностью до энергии связи экситонов.

Согласно теоретическим расчетам, энергетические интервалы $N_1 - N_2$. и $T_3 + T_4 - T_1 + T_2$ значительно больше, чем интервалы $\Gamma_4 - \Gamma_3$, $\Gamma_5 - \Gamma_3$. В силу этого можно предположить, что интенсивные полосы отражения A'_1 и B'_1 также формируются экситонными переходами, а именно Γ_4 (Γ_7)— Γ_3 (C₂) и Γ_5 (Γ_6) — Γ_3 (C₂) соответственно. Контуры линий отражения A_1' и В' лорошо описываются классической теорией формы экситонных линий: отражения. Принимая во внимание вышесказанное, расщепление Г1-Г3. $(C_1 - C_2)$ составляет 1.446 эВ.

Литература

- Воднарь И. В., Кароза А. Г., Смирнова Г. Ф. Изв. АН СССР. Сер. неорг. матер., 1985, т. 21, № 7, с. 1107—1109.
 Shay J., Wernick J. H. Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications. Pergamon, Oxford, 1974.
 Jaffe J. E., Zunger A. Phys. Rev. B, 1983, vol. 28, N 10, р. 5822—5847.
 Агранович В. М., Гинзбург В. Л. Кристаллооптика с учетом пространственной дисперсии и теория экситонов. М., 1979. 452 с.

Кишиневский политехнический институт им. С. Лазо Кишинев

Поступило в Редакцию 1 февраля 1988 г. В окончательной редакции 19 апреля 1988 г.