

D. V. Gitsu, I. N. Grincheshen, V. F. Krasovskii, V. I. Morozova, N. N. Syrbu, N. S. Popovich, Optical properties of TISbS₂ single crystals, *Dokl. Akad. Nauk* SSSR, 1989, Volume 306, Number 1, 82–85

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details: IP: 178.168.20.213 January 5, 2021, 15:48:19

Доклады Академии наук СССР

1989. Том 306, Nº 1

УДК 535.373.2

ФИЗИКА

Академик АН МССР Д.В. ГИЦУ, И.Н. ГРИНЧЕШЕН, В.Ф. КРАСОВСКИЙ, В.И. МОРОЗОВА, Н.Н. СЫРБУ, Н.С. ПОПОВИЧ

ОПТИЧЕСКИЕ СВОЙСТВА МОНОКРИСТАЛЛОВ TISbS₂

Среди полупроводников группы $TlB^5C_2^6$ интерес представляют широкозонные кристаллы $TlSbS_2$ и $TlSbSe_2$. Свойственная им ярко выраженная слоистая структура, возможность получения сколов с совершенной поверхностью, высокая фоточувствительность [1, 2] указывают на перспективность их использования в качестве фотодетекторов [3] с широкой областью чувствительности.

В ранних работах [4, 5], посвященных изучению оптических свойств кристалпов TlSbS₂, в области края собственного поглощения была обнаружена структура линий, интерпретированная как непрямые переходы с участием фононов, а ширина запрещенной зоны $E_g = 1,556$ эВ при T = 300 К. В более поздних работах [6, 7] по результатам анализа спектрального распределения коэффициента поглощения в интервале температур 2–300 К сделан вывод о наличии прямых минимальных межзонных переходов в TlSbS₂ и определена величина $E_g = 1,907$ эВ при 2 К.

Однако авторам этих работ не удалось наблюдать экситонную серию линий даже при 2 К. Поэтому экситонный характер перехода был установлен из спектров поглощения и отражения по линиям $n = 1^{n}$.

В данной работе приведены результаты исследования поглощения, отражения и люминесценции монокристаллов $TlSbS_2$ в поляризованном свете. Оптические спектры изучались при температуре кристаллов 2 К на установке, собранной на базе спектрометра ДФС-24, при 77 К на базе МДР-2 и на установке "Specord M-40".

Синтез соединения TISbS₂ проводили при T = 650 °С, используя при этом составные элементы следующей чистоты: Tl – 000, Sb – OC4, S – OC4. Методом горизонтальной зонной плавки были выращены большие качественные монокристаллы TISbS₂ *п*-типа размерами 1 × 1 × 15 см³. Темновое удельное сопротивление $\rho \sim 10^{10}$ Ом · см при T = 300 К. Для исследований использовались свежесколотые ориентированные пластины, полученные из больших слитков. Рентгеноструктурный анализ показал, что соединение TISbS₂ обладает триклинной симметрией.

Таблица 1

Энергетическое положение пиков отражения в TISbS, при 77 К

Обозначение пика	Энергетическое положение		Обозначение пика	Энергетическое положение	
	E⊥b	E∥b		E⊥b	Ellb
E _o	1,878	- · ·	E ₆	_	3,322
E_1	_	1,996	E_{η}	3,682	3,533
$\vec{E_2}$	2,269	2,169	$E_{\rm s}$	3,967	_ · ·
E_{a}	2,541	2,541	E _o	_	4,810
E,	2,727	_	E_{10}	_	5,206
$\vec{E_s}$		2,876	E_{11}	_	5,454
$\begin{array}{c}E_{\mathfrak{s}}\\E_{\mathfrak{4}}\\E_{\mathfrak{s}}\end{array}$	2,541 2,727 -	2,541 - 2,876	$ E_9 E_{10} E_{11} $	_ _ _	4,8 5,2 5,4

Рис. 1. Спектры отражения монокристаллов TISbS₂ при 77 К в поляризованном свете. $1 - E \parallel b$, $2 - E \perp b$, 3 - неполяризованный свет. В левой части рисунка увеличены фрагменты спектра в области края поглощения (кривые сдвинуты друг относительно друга на 1%)

Типичные спектры отражения свежесколотых монокристаллов TISbS₂ изображены на рис. 1, где сплошной линией показан спектр, записанный от грани кристалла, содержащей ось **b**, в поляризации **E** || **b**, штриховой линией – в поляризации **E** \perp **b** и штрихпунктирной – в неполяризованном свете. Энергетические положения пиков отражения приведены в табл. 1. В спектрах видны две группы наиболее интенсивных пиков в области 2,6 и 3,7 эВ, причем большинство пиков отражения поляризованы. Так, в перпендикулярной поляризации проявляются линии E_0 , $E_2 - E_4$, E_7 , E_8 , а в параллельной спектр богаче, в нем отсутствуют только линии E_0 , E_4 и E_8 .

В левой части рисунка увеличены фрагменты спектров в области 1,8-2,3 эВ. Несмотря на небольшую амплитуду пиков E_0 , E_1 , E_2 , их контур позволяет предположить, что они обусловлены состояниями n = 1 трех экситонов. При этом первый из них разрешен в перпендикулярной поляризации, второй в параллельной, а третий в обеих.

На рис. 2 (кривые 1, 2) показано спектральное распределение коэффициента поглощения для поляризаций падающего света $\mathbf{E} \perp \mathbf{b}$ и $\mathbf{E} \parallel \mathbf{b}$ при 77 К. Видно, что в поляризации $\mathbf{E} \perp \mathbf{b}$ край поглощения резкий, величина коэффициента поглощения в максимуме достигает 5400 см⁻¹. В поляризации $\mathbf{E} \parallel \mathbf{b}$ край поглощения тоже резкий, однако в области 1,87 эВ наблюдается ярко выраженная ступенька, где коэффициент поглощения составляет 1200 см⁻¹. Затем коэффициент поглощения растет более медленно и второй максимум наблюдается в области энергий 1,97–1,98 эВ.

Исследование краевого поглощения при 2 К (рис. 2, кривые 3, 4) подтверждает прямой экситонный характер края поглощения в TlSbS₂. В обеих поляризациях наблюдаются узкие пики при E = 1,887 эВ. Величины коэффициента поглощения в максимумах составляют для $E \perp b$ 7400 см⁻¹, для $E \parallel b$ 3200 см⁻¹. Из сравнения рис. 1 и 2 видно, что существует корреляция между линиями в спектрах поглощения

Рис. 2. Спектры поглощения (l, 2 - при 77 K, 3, 4 - при 2 K, толщина кристалла <math>d = 8 мкм), модулированного по длине волны пропускания, 5 - при 77 K, d = 40 мкм) и люминесценции (на врезке при 2 K) монокристаллов TISbS₂

и отражения. При этом, исходя из того, что пик E_0 в отражении виден в перпендикулярной поляризации и величина коэффициента поглощения в этой поляризации существенно выше, можно сделать вывод, что этот пик обусловлен разрешенными переходами в экситонное состояние n = 1. В параллельной поляризации он запрещен, однако низкая симметрия кристалла приводит к частичному снятию запрета, что дает возможность наблюдать этот переход в спектрах пропускания.

На прямой запрещенный характер минимального межзонного перехода в поляризации TlSbS₂ указывает также линейность коротковолнового участка спектра поглощения, перестроенного в координатах $(kh\nu)^{2/3} = f(h\nu)$.

В "запрещенной" поляризации в области 1,90–1,94 эВ наблюдается слабая структура линий, природа которых могла бы быть связана с возбужденными состояниями экситона, однако точно установить их положение по низкотемпературным спектрам пропускания не удается.

Люминесценция исследовавшихся кристаллов возбуждалась линией 4880 Å Ar⁺-лазера. Зарегистрированы линии люминесценции в обеих поляризациях, причем в параллельной поляризации интенсивность люминесценции в 2 раза меньше (рис. 2, врезка). Линии люминесценции значительно уже пика E_0 в поглощении, и максимум их сдвинут относительно E_0 в длинноволновую сторону на 11 мэВ. Этот сдвиг становится понятным, если учесть, что линия люминесценции попадает в область энергий, где коэффициент поглощения возрастает на 2–3 порядка, т.е. с учетом самопоглощения в кристалле пик люминесценции хорошо коррелирует с максимумом поглощения как по энергетическому положению, так и по интенсивности (в "квазизапрещенной" поляризации E || b интенсивность люминесценции в ~2 раза меньше).

На основании результатов, полученных по спектрам поглощения, отражения и люминесценции, можно предложить модель структуры энергетических зон $TlSbS_2$ в области края фундаментального поглощения (врезка на рис. 1). Дальнейшее уточнение этой модели и установление симметрии зон будут возможны после теоретического расчета зонной структуры.

На кристаллах TISbS₂ для довольно широкого диапазона изменения толщины сля (8-60 мкм) наблюдается ярко выраженная интерференционная картина. Исследование интерференции на большом числе образцов различной толщины показало, что в области энергий $E < E_0$ существуют три частоты осцилляций, существенно отличающиеся одна от другой. Эта картина особенно отчетливо проявляется в λ -модулированных спектрах пропускания (рис. 2, кривая 5). Глубина модуляции составляла 1 Å.

Наличие трех частот осцилляций свидетельствует о существовании в TISbS₂ трех различных коэффициентов преломления. В интервале энергий 1,45–1,87 эВ эти коэффициенты преломления монотонно возрастают в пределах $n_1 = 4,4-5,8$, $n_2 = 0,9-1,5$, $n_3 \simeq 0,1$.

В работе [8] с помощью дифракции рентгеновских лучей показано, что $TISbS_2$ обладает триклинной симметрией (пространственная группа с центром симметрии P_1 , 16 атомов и один слой в элементарной ячейке). Слоистая структура строится с помощью сильно связанных цепочек Sb и S. Слои соединяются через атомы Tl, которые слабо связаны с S или Sb. Это приводит к легкому скалыванию в плоскости (а-в). Из кристаллической структуры в работе делается предположение об ожидаемой сильной анизотропии физических свойств в трех направлениях. Характерным проявлением этой анизотропии и является наличие трех существенно различных коэффициентов преломления в $TISbS_2$.

Интерференционная картина наблюдается в кристаллах TlSbS₂ не только в области прозрачности, но и в области $E > E_0$, где для обеих поляризаций в λ -модулированных спектрах пропускания при 77 К проявляется серия из 4–5 эквидистантных линий. Тщательное исследование энергетических положений этих линий позволяет объяснить их существование интерференцией света в тонкой пластине TlSbS₂.

Институт прикладной физики Академии наук МССР, Кишинев Кишиневский политехнический институт им. С. Лазо Поступило 15 I 1988

ЛИТЕРАТУРА

1. Житарь В.Ф., Попович Н.С., Гицу Д.В., Радауцан С.И. – Физ. и техн. полупроводников, 1974, т. 8, вып. 5, с. 996–997. 2. Гицу Д.В., Гринчешен И.Н., Красовский В.Ф., Попович Н.С. – Там же, 1988, т. 22, вып. 5, с.996–997. 3. Гринчешен И.Н., Попович Н.С. – Там же, 1985, т. 19, вып. 2, с. 230–233. 4. Ботгорс И.В., Степанов Г.И., Чиник Б.С., Канцер Ч.Т. – ФГТ, 1970, т. 12, № 2, с. 643–644. 5. Степанов Г.И., Ботгорс И.В., Чиник Б.С., Донцой П.И. – ФТТ, 1970, т. 12, № 6, с. 1797–1800. 6. Rouquette B., Allegre J., Gil B. et al. – Phys. Rev. B, 1986, vol. 33, № 6, p. 4114–4118. 7. Rouguette P., Allegre J., Mathieu H. et al. – Sol. State. Commun., 1986, vol. 59, № 12, p. 899–903. 8. Rev N., Jumas J.C., Olivier-Fourcade, Philippot E. – Acta cryst., 1983, vol. C39, № 8, p. 971–974.