

Physica B 210 (1995) 114-120

Optical properties and energetic band structure of Tl₃AsS₃, Tl₃AsSe₃ and Tl₃SbS₃ crystals

N.N. Syrbu^{a,*}, V.T. Krasovsky^a, D.V. Gitsu^b, I.N. Grincheshen^b

^a Technical University of Moldova, 277012, Stefan cel Mare bul. 168, Kishinev, Moldova ^b Institute of Applied Physics, Moldavian Academy of Sciences, 277028 Grosul str. 5, Kishinev, Moldova

Received 25 August 1993; revised 28 March 1994

Fundamental absorption edge spectra and reflectivity spectra of Tl_3AsS_3 , Tl_3AsSe_3 and Tl_3SbS_3 crystals have been investigated in the range 1-6 eVat 300 and 77 K. Polarization dependences of three excitonic series ground states have been found in Tl_3AsS_3 and Tl_3SbS_3 crystals. The energetic band structure of these crystals has been built on the basis of experimental reflectivity spectra and theoretical band calculations for crystals of C_{3v}^5 group.

A number of works dedicated to the investigation of acoustooptical properties of $M_3^1 M^5 M_3^6$ semiconductor materials were published recently [1]. The semiconductor materials Te, Tl_3AsS_3 , Tl₃AsSe₃, Tl₃SbS₃ have the perspective that they can be applied in acoustooptic systems operating in the middle infrared range [1]. Their acoustooptical quality (M_2) is above 1000. These materials have the anisotropy of optical and acoustooptical properties. They are transparent at the near-infrared region and in the operating region of optical fiber communication systems (0.85–1.55 μ m). The use of these materials in acoustooptical devices is deterred by the lack of information about optical properties in the transparent region and absorption band. The proustite crystal Ag_3AsS_3 is the analogue of the investigated crystals. Its optical properties are widely investigated and band structure theoretical

calculations have been performed. The optical polarized spectra of Tl₃SbS₃ crystals are reported in Ref. [2] for the range 1-5 eV at 300 K but the results given in this work are not exact. The band structure of Tl₃AsS₃, Tl₃AsSe₃ crystals is unknown. In the present work the fundamental absorption spectra and the anisotropy of reflectivity spectra of Tl₃AsS₃, Tl₃AsSe₃ and Tl₃SbS₃ crystals are investigated in the range 1-6 eV at 300 and 77 K. We have found direct electron transitions into the exciton S-states (n = 1). Ground states of three exciton series have been discovered. The experimental results are compared with the energetic band structure of Ag₃AsS₃ isomorphous crystals and on the basis of the experimental results the energetic band structure of Tl₃AsS₃ and Tl₃SbS₃ crystals has been proposed. The splittings of the upper valence bands caused by the spin-orbital interaction and the crystal field have been calculated and determined at the points Γ , Σ and Λ of the Brillouin zone.

Single crystals of undoped Tl₃AsS₃, Tl₃AsSe₃, and Tl₃SbS₃ crystals have been grown using a classical Bridgman method. The dimensions of the crystals were $10 \times 10 \times 20$ mm³. The freshly cleaved surfaces of the crystals have been investigated. The Tl₃AsS₃, Tl₃AsSe₃ and Tl₃SbS₃ compounds crystallize in a lattice with the space group C⁵_{3v} with z = 3 molecules per unit cell and one molecule in the primitive cell.

^{*} Corresponding author.