

Interference of birefractive waves in CdGa₂S₄ crystals

N. N. Syrbu, A. V. Tiron, V. I. Parvan, V. V. Zalamai, I. M. Tiginyanu

https://doi.org/10.1016/j.physb.2015.02.007

Abstract

In CdGa₂S₄ crystals the Fabry–Perot and birefringence interference spectra were investigated. Spectral dependences of refraction indexes for ordinary (n_0) and extraordinary (n_e) light waves are defined. The spectral dependence $\Delta n = n_e - n_0$ from the short and long-wavelength parts of isotropic wavelength $\lambda_0 = 485.7$ nm (300K) is determined. It is established that at $\lambda > \lambda_0$ Δn is positive and at $\lambda < \lambda_0 \Delta n$ is negative. Wavelength $\lambda_0 = 485.7$ nm shifts with decreasing temperature to short-wavelengths. The phase difference of ordinary and extraordinary light waves for $\lambda > \lambda_0$ and $\lambda < \lambda_0$ was determined. The band in reflection spectra observed at the isotropic wavelength has a small halfwidth ($\sim 3-5$ Å). Another isotropic wavelength was found in the short-wavelength region (433nm) for crystals obtained by iodine transport method.