2006, Volume 203, Number 11, pag. 2904-2908

Fundamental absorption edge in CuIn₅Se₈ and CuGa₃Se₅ single crystals

León M., Levcenko S., Syrbu N. N., Nateprov A., Tezlevan V. Merino J. M., Arushanov E.

https://doi.org/10.1002/pssa.200669506

Abstract

Optical absorption spectra of $CuIn_5Se_8$ and $CuGa_3Se_5$ single crystals have been investigated. The energy gap E g for $CuIn_5Se_8$ ($CuGa_3Se_5$) was found to be varied from 1.27 (1.79) to 1.21 (1.71) eV in the temperature range between 10 and 300 K. The temperature dependence of E g was studied by means of the Einstein model and the Pässler model. The Einstein temperature {222 (267) K}, the Debye temperature {310 (380) K}, a dimensionless constant related to the electron–phonon coupling {1.62 (2.65)} as well as an effective energy {20 (24) meV} and a cut-off phonon energy {35 (39) meV} have been estimated for $CuIn_5Se_8$ ($CuGa_3Se_5$). It was also found that the major contribution of phonons to the shift of E g versus temperature in $CuIn_5Se_8$ ($CuGa_3Se_5$) is mainly from optical phonons.