

Frenkel excitons and band structure in Sb₂S₃ single crystals

S. I. Beril, I. G. Stamov, A. V. Tiron, V. V. Zalamai, N. N. Syrbu

https://doi.org/10.1016/j.optmat.2020.109737

Abstract

Anisotropy of optical properties of Sb₂S₃ single crystals was investigated at 11 and 300 K. Ground and excited states of four excitonic states (A, B, C and D) were found out. Parameters of observed excitons and bands V₁ – V₄ were determined. In Γ point of Brillouin zone the effective masses of electrons in the bottom conduction band (mc^{*} = 1.08m₀) and of holes in four top valence bands (m_{v1}^{*}, m_{v2}^{*} = 2.91m₀ and m_{v3}^{*}, m_{v4}^{*} = 3.12m₀) were estimated. The splitting magnitudes of valence bands V₁ – V₂ in the Brillouin zone center by crystal field (Δ_{cf} = 20 meV) and by spin-orbital interaction (Δ_{so} = 375 meV) were calculated. V₃ and V₄ bands have splitting of 198 meV. The observed features were interpreted on the base of existing theoretically calculated band structure and symmetries of excitons in Γ point of Brillouin zone for single crystals of orthorhombic symmetry (Pnma).