

Excitonic spectra in HgGa₂Se₄ crystals

N. N. Syrbu, V. V. Zalamai

https://doi.org/10.1016/j.optmat.2018.01.002

Abstract

Ground and excited states of four excitonic series (A, B, C and D) were discovered in HgGa₂Se₄ crystals at 10 K. Parameters of excitons and bands were determined. An effective mass of electrons mc is equal to $0.26m_0$ and masses of holes mv₁, mv₂ and m_{v3} are equal to $2.48m_0$, $2.68m_0$ and $1.6m_0$ respectively in Γ point of Brilloin zone. Valence bands splitting by crystal field ($\Delta_{cf} = 70$ meV) and spin-orbital interaction ($\Delta_{so} = 250$ meV) were estimated in Brillouin zone center. Optical functions (n, ε_1 and ε_2) for polarizations $E \perp c$ and $E \parallel c$ in electron transitions region (2-6 eV) were calculated by Kramers-Kronig method. The discovered features were discussed on a base of the existing theoretical energetical band structure calculations and excitonic bands symmetries in k = 0 Brillouin zone for chalcopyrite crystals. The resonance Raman scattering was investigated.