

Excitonic spectra and energy band structure of ZnAl₂Se₄ crystals

N. N. Syrbu, V. V. Zalamai, A. V. Tiron, I. M. Tiginyanu

https://doi.org/10.1016/j.optmat.2015.09.035

Abstract

Absorption, reflection and wavelength modulated reflection spectra were investigated in ZnAl₂Se₄ crystals. The energy positions of ground and excited states for three excitonic series (A, B and C) were determined. The main parameters of excitons and more precise values of energy intervals $V_1(\Gamma_7)-C_1(\Gamma_6)$, $V_2(\Gamma_6)-C_1(\Gamma_6)$, and $V_3(\Gamma_7)-C_1(\Gamma_6)$ were estimated. Values of splitting due to crystal field and spin–orbital interaction were calculated. Effective masses of electrons (m_{C1}*) and holes (m_{V1}*, m_{V2}*, m_{V3}*) were estimated. Reflection spectra contours in excitonic region were calculated using dispersion equations. Optical functions for E>Eg from measured reflection spectra were assigned on the base of Kramers–Kronig relations.