

Excitonic spectra and band structure of CdGa₂Se₄ birefractive crystals

N. N. Syrbu, I. G. Stamov, V. I. Parvan, V. V. Zalamai, I. M. Tiginyanu

https://doi.org/10.1016/j.physb.2013.08.015

Abstract

We report on the intersection of spectral dependences of refractive indices no and ne at the wavelengths 546nm (λ_0) and 450nm (λ_{01}) in CdGa₂Se₄ single crystals. The value of difference $\Delta n = n_e - n_0$ is equal to zero at the wavelengths involved. When placed between two crossed polarizers, the crystals of CdGa₂Se₄ exhibit a transmission band at the wavelength of λ_0 =546nm (300K). The ground and excited states of three excitonic series (A, B and C) were found out at 13K in CdGa₂Se₄ crystals, and other parameters of excitons and bands were determined. In the Γ point of Brillouin zone the effective mass of electrons mc is equal to 0.14mo, and the effective masses of holes m_{v_2} and m_{v_3} are equal to $0.76m_0$ and $0.94m_0$, respectively. The hole mass mv1 depends upon the direction of wave vector k: at polarization E||c|k||a the mass m_{v1}=1.15m_o, and at polarization E||c, k||b m_{v1}=0.84m_o. The values of valence bands splitting in the center of Brillouin zone by the crystal field (Δ_{cf} =49meV) and spin-orbital interaction (Δ_{so} =351meV) were determined. The optical functions n, k, ε_1 and ε_2 in polarizations $E \perp c$ and $E \parallel c$ for the energy diapason from 3 to 6eV were calculated from the reflectivity spectra by Kramers-Kronig analysis. The evidenced features are discussed on the basis of recent theoretical calculations of the band structure of CdGa₂Se₄ crystals.