

Excitonic polaritons of zinc diarsenide single crystals

Syrbu N. N., Stamov I. G., Zalamai V. V., Dorogan A.

https://doi.org/10.1016/j.physb.2016.11.022

Abstract

Excitonic polaritons of ZnAs₂ single crystals had been investigated. Parameters of singlet excitons with $\Gamma_2^{-}(z)$ symmetry and orthoexcitons $2\Gamma_1^{-}(y)+\Gamma_2^{-}(x)$ had been determined. Spectral dependencies of ordinary and extraordinary dispersion of refractive index had been calculated using interferential reflection and transmittance spectra. It was shown, that A excitonic series were due to hole (V₁) and electron (C₁) bands. The values of effective masses of electrons (mc*=0.10m₀) and holes (mv1*=0.89m₀) had been estimated. It was revealed that the hole mass mv1* changes from 1.03m₀ to 0.55m₀ at temperature increasing from 10K up to 230K and that the electron mass mc* does not depend on temperature. The integral absorption A (eVcm⁻¹) of the states n=1, 2 and 3 of $\Gamma_2^{-}(z)$ excitons depends on the A_n≈n⁻³ equality, which it is characteristic for S-type excitonic functions. Temperature dependences of the integral absorption of ground states for $\Gamma_2^{-}(z)$ and $\Gamma_2^{-}(x)$ excitons differ. The ground states of B and C excitons formed by V₃ – C₁ and V₄ – C₁ bands and its parameters had been determined.