

N. N. Syrbu, S. B. Khachaturova, EXCITON-PHONON SPECTRA IN ZINC DIPHOSPHIDE, Fizika Tverdogo Tela, 1985, Volume 27, Issue 9, 2687–2690

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details:

IP: 178.168.20.213

December 28, 2020, 16:30:59

SOLID STATE PHYSICS

Vol. 27, № 9

УДК 538.9

ЭКСИТОН-ФОНОННЫЕ СПЕКТРЫ В ДИФОСФИДЕ ЦИНКА

Н. Н. Сырбу, С. Б. Хачатурова

В модулированных по длине волны спектрах поглощения моноклинных кристаллов дифосфида цинка в поляризации $E \perp c$ выявлены запрещенные непрямые переходы в экситонную зону n=1 с участием LO-фононов симметрии Γ_4 . По спектрам отражения кристаллов ZnP_2 рассчитаны параметры осцилляторов ИК активных фононов.

В кристаллах дифосфида цинка черной модификации в спектрах люминесценции в области энергий $E>E_g$ при $T\!=\!2$ К обнаружены эквидистантные линии излучения, обусловленные возбуждением оптических фононов [1].

В настоящей работе исследованы модулированные по длине волны спектры пропускания ${\rm ZnP_2}$ при $T\!=\!77~{\rm K}$ в области континиума. Спектры изучены на установке, собранной на базе монохроматора МДР-2 при спектральной ширине

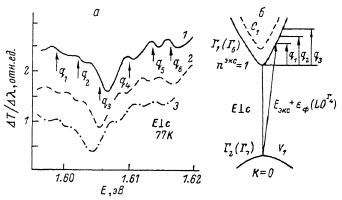


Рис. 1.

a — модулированные по длине волны спектры пропускания ${\rm ZnP_2-C_{2h}^5}$ для концентраций носителей заряда $n\sim 10^{14}\,{\rm cm^{-3}}$ (1), $10^{16}\,{\rm cm^{-3}}$ (2) и $10^{18}\,{\rm cm^{-3}}$ (3). δ — модель непрямых переходов в экситонную зону n=1 в K=0 с участием фононов.

щели 1 Å и глубине модуляции $\pm 1 \text{ Å}$. Результаты сопоставлены с данными ИК спектров отражения, измеренных на приборе Perkin—Elmer 580 B.

 В области $E < E_g$ непрямые переходы в экситонную зону происходят с участием фононов малых энергий, обнаружение которых затруднено присутствием в этой области линий возбужденных состояний экситона. В области $E \geqslant E_g$ непрямые экситонные переходы возможны с участием высокоэнергетических фононов. Сопоставление значения энергий $\varepsilon_{\phi}-E_{n=1}$, полученных из анализа спектров $\Delta T/\Delta\lambda$, с энергиями LO- и TO-фононов, определенными из поляриза-

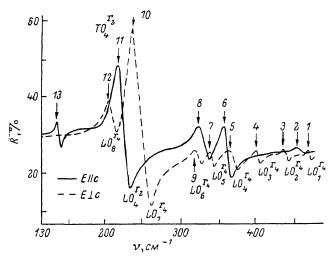


Рис. 2. Спектры отражения ZnP_2 — C_{2h}^5 в ИК области.

ционных зависимостей спектров отражения в ИК области (рис. 2), свидетельствует о том, что структура полос q_1-q_5 обусловлена участием в непрямых экситонных переходах LO-фононов симметрии Γ_4 с частотами 339, 371, 403, 436, 467 и 484 см⁻¹ соответственно (см. таблицу). Полоса q_6 , по-видимому, обусловлена фононами, активными в комбинационном рассеянии (КР). С увеличением концентрации свободных электронов дно экситонной зоны $n\!=\!1$ смещается в длинноволновую область, что приводит к смещению полос $q_1\!-\!q_6$ (рис. 1, a, кривые 2, 3). Это может быть вызвано влиянием экранирующего потенциала свободных носителей заряда на энергию связи свободного экситона или некоторым изменением параметра кристаллической решетки из-за нарушения стехиометрии [7].

Параметры осцилляторов ИК активных фононов, полученные из расчета спектров отражения $\mathrm{ZnP_2} - C_{2h}^5$

Поляризация, симметрия фононов	ωTj	ωLj	Γ_j		
	CM-1			f_j	^ε ω, ^ε s
$egin{array}{c} \mathbf{E} \perp \mathbf{c} \\ \mathbf{Au} \ (\Gamma_2) \end{array}$ $\mathbf{E} \parallel \mathbf{c} \\ \mathbf{Bu} \ (\Gamma_4) \end{array}$	211.6 236.4 323.9 340.4 370.7 401.2 438.4 469.7 143.6 218.9 326.3 358.2 457.4	214.3 254.2 325.3 341.9 376.9 402.2 439.2 470.5 144.9 228.6 330.1 362.4 458.0	11.3 10.5 10.5 8.0 6.2 6.9 6.8 6.6 4.0 9.7 13.1 9.5 9.7	0.033 0.085 0.005 0.005 0.003 0.003 0.002 0.002 0.013 0.072 0.016 0.014	$\varepsilon_{\infty} = 8.9$ $\varepsilon_{s} = 10.6$ $\varepsilon_{\infty} = 9.0$ $\varepsilon_{s} = 10.5$

Соединение ZnP₂ моноклинной модификации содержит в элементарной ячейке 8 атомов цинка и 16 атомов фосфора, что обсловливает появление в фононном спектре 72 ветвей. Критическими точками фононного спектра кристаллов

симметрии C_{2h}^5 являются Γ , Y, U, λ , R, G [8]. В соответствии с теорией групп неприводимые представления фононных колебаний в точке Γ зоны Бриллюэна имеют вид [8]: Γ =18Ag+18Bg+18Au+18Bu. В однофононных ИК спектрах могут проявиться 17 фононов симметрии Au (Γ_2) и 16 фононов симметрии Bu (Γ_4) в поляризациях $E \parallel c$ и $E \perp c$ соответственно [9, 10]. В КР-18 фононов с симметрией Ag (Γ_1) и Bg (Γ_3) . Для определения оптических констант ZnP_2 — C_{2h}^5 в области однофононного резонанса использовалась многоосцилляторная модель,

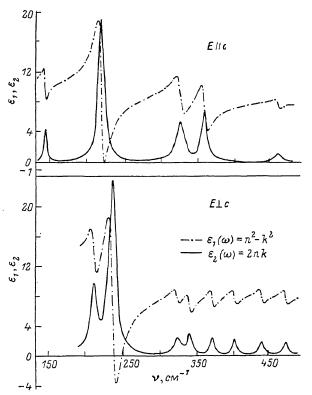


Рис. 3. Частотные зависимости вещественной ε_1 (ω)= n^2-k^2 и мнимой ε_2 (ω)=2nk частей диэлектрической проницаемости ${\rm ZnP}_2-{\rm C}_{2h}^5$.

в которой дисперсия диэлектрической проницаемости в исследуемой области частот описывается выражением $[^{11}]$

$$\varepsilon(\omega) = \varepsilon_{1}(\omega) + i\varepsilon_{2}(\omega) = \varepsilon_{\infty} + \sum_{j=1}^{N} \frac{\varepsilon_{\infty}(\omega_{Lj}^{2} - \omega_{Tj}^{2})}{\omega_{Tj}^{2} - \omega^{2} - i\omega\Gamma_{j}}, \qquad (1)$$

где ε_{∞} — высокочастотная диэлектрическая проницаемость кристалла, N — количество резонансных особенностей, Γ_j , ω_{Lj} и ω_{Tj} — затухание, продольная и поперечная (резонансная) частоты оптических колебаний j-го осциллятора. Коэффициент отражения рассчитывался из следующих соотношений

$$R(\omega) = \left| \frac{n(\omega) - 1}{n(\omega) + 1} \right|^{2}, \quad n(\omega) = \sqrt{\varepsilon(\omega)}. \tag{2}$$

Оптические параметры ИК активных фононов в ${\rm ZnP_2-C_{2h}^5}$ определялись методом подгонки спектров отражения, вычисленных по формулам (2) к экспериментально полученным (рис. 3). Хорошее совпадение расчетных спектров с экспериментальными наблюдалось при значениях параметров, приведенных в таблице. Сила осциллятора рассчитывалась из выражения

$$f_j = \frac{\varepsilon_\infty}{4\pi} \left(\frac{\omega_{Lj}^2}{\omega_{Tj}^2} - 1 \right) \, .$$

Значения высокочастотной (ϵ_{∞}) и статической (ϵ_{s}) диэлектрических проницаемостей для каждой поляризации (см. таблицу) связаны между собой соотношением

$$\varepsilon_{s} = \varepsilon_{\infty} + \sum_{j} 4\pi f_{j}.$$

На основании данных таблицы построены частотные зависимости вещественной ε_1 (ω) = $n^2 - k^2$ и мнимой ε_2 (ω) = 2nk частей диэлектрической проницаемости ε_{∞} B ZnP₂— C_{2h}^{5} .

Как видно, частоты фононов, определенные из спектров модулированного по длине волны пропускания, совпадают с частотами, полученными из измерений ИК спектров отражения. В дифосфиде цинка непрямые переходы $\Gamma_2\left(\Gamma_7
ight)$ — $\Gamma_1\left(\Gamma_6
ight)$ в экситонную зону с эмиссией высокочастотных фононов попадают в область энергий континиума $(E \geqslant E_{\scriptscriptstyle g})$, где другие механизмы, изменяющие монотонный рост коэффициента поглощения, практически отсутствуют.

Литература

- [1] Певцов В. А., Пермогоров С. А., Селькин А. В., Сырбу Н. Н., Уманец А. Г. ФТП, 1982, т. 16, № 8, с. 1399—1405.
- [2] Gross E., Permogorov S., Razbirin B. J. Phys. Chem. Sol., 1966, vol. 27, № 10, p. 1647— 1651.
- [3] Гросс Е. Ф., Крейнгольд Ф. И. Письма в ЖЭТФ, 1968, т. 7, № 8, с. 281—283.
- [4] Gross E., Permogorov S., Travnikov V., Selkin A. J. Phys. Chem. Sol., 1970, vol. 31, No. 12, p. 2595-2606.
- [5] Гросс Е. Ф., Пермогоров С. А., Травников В. В., Селькин А. В. ФТТ, 1971, т. 13, № 3, c. 699—708.
- [6] Крейнгольд Ф. И., Кулинкин В. С., Цуриков В. И. ФТТ, 1978, т. 20, № 7, с. 2191—2195. [7] Сырбу Н. Н., Хачатурова С. Б., Стамов И. Г. ФТП, 1984, т. 18, № 8, с. 1498—1500. [8] Поплавной А. С., Тупицын В. Е., Тютерев В. Г. Изв. вузов, Физика, 1977, № 5, с. 75—
- 78.
- [9] Лазарев В. Б., Вавилов В. С., Чукичев М. В., Шевченко В. Я., Магомедгаджиев Г. Г., Пальма В. Р. ФТП, 1978, т. 12, № 4, с. 673—677.
 [10] Sobotta H., Neuman H., Syrbu N. N., Riede V. Phys. St. Sol. (b), 1983, vol. 115, № 2,
- p. K55-K58.
- [11] Уханов Ю. И. Оптические свойства полупроводников. М.: Наука, 1977. 368 с.

Кишиневский политехнический институт им. С. Лазо

Поступило в Редакцию 21 ноября 1984 г. В окончательной редакции 21 марта 1985 г.