

Journal of Alloys and Compounds

Volume 635, 25 June 2015, Pages 188-193

Birefringence of Cu₂ZnSiSe₄ single crystals

N. N. Syrbu, V. Zalamai, M. Guc, S. Levcenko, A. Dorogan, E. Arushanov

https://doi.org/10.1016/j.jallcom.2015.02.100

Abstract

In Cu2ZnSiSe4 single crystals an interference spectra of the Fabry–Perot type due to observed birefringence were studied and spectral dependence of the refractive index $n_{||}$ (E||c) and n_{\perp} (E \perp c), which intersect at isotropic wavelength λ_0 =622nm (300K) and 605nm (10K) were defined. The spectral dependence of $\Delta n = n_{\perp} - n_{||}$ in the short-wave and long-wave side of the wavelength λ_0 was determined. It was found that when $\lambda > \lambda_0$ Δn is negative and when $\lambda < \lambda_0$ Δn is positive. Wavelength λ_0 shifts as the temperature decreases toward shorter wavelengths. Phases of the $n_{||}$ and n_{\perp} light waves in $\lambda > \lambda_0$ and $\lambda < \lambda_0$ are different. At a wavelength of 538nm (10K) Δn has a maximum. Absorption coefficient in the fringes varies up to $10^2 - 10^3$ times.