

Birefringence and band structure of CdP2 crystals

S. I. Beril, I. G. Stamov, N. N. Syrbu, V. V. Zalamai

https://doi.org/10.1016/j.physb.2013.04.029

Abstract

The spatial dispersion in CdP2 crystals was investigated. The dispersion is positive (n ^{k||c}>n ^{k||y}) at $\lambda > \lambda_0$ and negative (n^{k||c}<n^{k||y}) at $\lambda < \lambda_0$. CdP2 crystals are isotropic for wavelength $\lambda 0=896$ nm. Indirect transitions in excitonic region Egx are nonpolarized due to one pair of bands. Minimal direct energy intervals correspond to transitions $\Gamma 1 \rightarrow \Gamma 1$ for E^{||}c and $\Gamma 2 \rightarrow \Gamma 1$ for E[⊥]c. The temperature coefficient of energy gap sifting in the case of temperature changing between 2 and 4.2K equals to 10.6meV/K and 3.2mev/K for $\Gamma 1 \rightarrow \Gamma 1$ and $\Gamma 2 \rightarrow \Gamma 1$ band gap correspondingly. Reflectivity spectra were measured for energy interval 1.5–10eV and optical functions (n, k, ε_1 , ε_2 , $d^2\varepsilon_1/dE^2$ and $d^2\varepsilon_2/dE^2$) were calculated by using Kramers–Kronig analyses. All features were interpreted as optical transitions on the basis of both theoretical calculations of band structure.