THERMALLY ASSISTED FLUX FLOW IN MgB₂ : STRONG MAGNETIC FIELD DEPENDENCE OF THE ACTIVATION ENERGY

A.Sidorenko^{a,d,e}, V. Zdravkov^{a,b}, V. Ryazanov^b, S. Horn^c, S. Klimm^c, R.Tidecks^c,

A. Wixforth^c, Th. Koch^d, Th. Schimmel^{d,e}

^aInstitute of Applied Physics, MD-2028 Kishinev, Moldova
^bInstitute of Solid State Physics, RU-142432 Chernogolovka, Russia
^cInstitut für Physik, Universität Augsburg, D-86159 Augsburg, Germany
^dInstitute of Nanotechnology (INT), Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany
^eInstitute of Applied Physics, Universität Karlsruhe, D-76128 Karlsruhe, Germany

The origin of the resistive transition broadening for MgB_2 thin films was investigated. Thermally activated flux flow is found to be responsible for the resistivity contribution in the vicinity of T_c . The origin of the observed extraordinary strong magnetic field dependence of the activation energy of the flux motion is discussed.

1. Introduction

The discovery of superconductivity in MgB₂, a material with a hexagonal layered crystal structure and the highest critical temperature, $T_c = 39$ K, found for an intermetallic superconducting compound [1], raised questions about its transport properties. This strong type-II superconductor with a large Ginzburg-Landau parameter $\kappa \approx 26$, a magnetic penetration length $\lambda(0) = 140-180$ nm [2] and short coherence lengths, $\xi_c (0) = 2.3$ nm, $\xi_{ab} (0) = 6.8$ nm [3] has a rather high critical current density up to $j_c \sim 1.6 \times 10^7$ A/cm² at 15 K [4]. The latter finding makes the novel superconductor very attractive for technical applications. On the other hand, a broadening of the superconducting transition, as found in resistivity measurements, would severely limit the applicability of MgB₂. Therefore, it is important to study the mechanism which causes this broadening.

Superconducting transition broadening in the presence of a magnetic field can have different reasons. It may be caused by an inhomogeneous microstructure of polycrystalline samples with additional phases having different T_c . Moreover, fluctuations play an important role in the vicinity of the superconducting transition especially for low-dimensional and layered