

Physica C 370 (2002) 197-204

www.elsevier.com/locate/physc

Perpendicular upper critical field of a proximity-coupled superconducting film

A.S. Sidorenko^{a,1}, C. Sürgers^{a,*}, H.v. Löhneysen^{a,b}

^a Physikalisches Institut, Universität Karlsruhe, D-76128 Karlsruhe, Germany ^b Forschungszentrum Karlsruhe, Institut für Festkörperphysik, D-76021 Karlsruhe, Germany

Received 28 March 2001; received in revised form 15 June 2001; accepted 20 June 2001

Abstract

The temperature dependence of the perpendicular upper critical field $B_{c2\perp}$ of a single superconducting Nb film (S) sandwiched between insulating (I) and/or normal-metal layers (N = Cu) is investigated. For the ISI configuration, $B_{c2\perp}$ exhibits the usual linear *T*-dependence near the transition temperature T_c in contrast to the NSI and NSN configurations where a positive curvature of $B_{c2\perp}(T)$ is observed near T_c . This demonstrates the influence of the different boundary conditions on the $B_{c2\perp}(T)$ behavior of a single S film in contact with N or I. Deviations from the linear *T*-dependence are thus attributed to the proximity effect due to the presence of an N–S boundary. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 74.50.+r; 74.60.Ec; 74.80.Dm *Keywords:* Superconducting films; Proximity effect; Perpendicular critical field

1. Introduction

The upper critical magnetic field B_{c2} of an isotropic type-II superconductor generally obeys a linear temperature dependence in the vicinity of the superconducting transition temperature T_c . A deviation of $B_{c2}(T)$ from a linear *T*-dependence is often ascribed to inhomogeneities distributed in the sample volume which can result in a broad-

ening of the resistive transitions R(T) and R(B) as considered by Zwicknagl and Wilkins [1] or by Larkin and Ovchinnikov [2].

However, in anisotropic superconductors B_{c2} may show deviations form a linear *T*-dependence [3,4]. In particular, artificially prepared metallic multilayers (ML) consisting of alternating superconducting (S) and normal metal (N), or of S and insulating (I) layers, or even of two different superconductors S and S', show unusual $B_{c2}(T)$ dependences [5]. For instance, for S/N ML the *parallel* upper critical field $B_{c2\parallel}(T)$, where the magnetic field is oriented parallel to the film plane, can exhibit a dimensional crossover arising from the modulated structure perpendicular to the film plane and field. $B_{c2\parallel}(T)$ was calculated

^{*}Corresponding author. Tel.: +49-721-608-3456; fax: +49-721-608-6103.

E-mail address: christoph.suergers@physik.uni-karlsruhe.de (C. Sürgers).

¹ Permanent address: Institute of Applied Physics, Kishinev 2028, Moldova.