
9th International Conference on Microelectronics and Computer Science, Chisinau, Republic of Moldova, October 19-21, 2017

 386

INTRODUCTION

Various companies’ information systems no longer simply

mirror offline business processes. Many of transactions that

describe corporate business systems’ users’ actions have no

physical analogues at all. Plenty of documents have no hard

copy backups. All of this transforms software from a

helpful tool to an integral component of the business. For

some businesses, these components are more important

than the physical ones: a telecom, bank or store simply

cannot function without their billing, banking and registry

systems respectively. On the other hand, an oil company

can easily continue pumping oil. They just won’t be able to

keep track of it very well.

Therefore it should not surprise you that threats to business

process functionality are dealt with very seriously.

Different companies approach their applications

differently: there are the most critical ones, with the

company’s functions as a business unit depending on their

performance. For example, at one oil company, we have

discovered a bizarre incident classification metric. It

flagged halting the application responsible for sending the

oil shipping signal with the same flag as a terrorist act at

the pipeline or an assassination attempt at an executive’s

life.

The damage from a sudden halt of an application heavily

depends on how competitive the business environment it’s

found in is. For example, halting an online store will lead

to customers simply buying their products at a different

one, leading to direct losses. Conversely, incorrect

operation of internet banking will not lead to direct losses,

since all of the bank’s clients can’t just up and leave.

They’ll just wait until the online portion is up and running

again. Some of the bank’s operations might be performed

offline at the bank’s office, but the bank would not lose

money. However, indirect losses would still be there: there

would be an increase of stress on their call centers and tech

support; emotional clients will complain about the bank on

social networks; for a small percent of these clients, this

would be the last straw, and they would switch banks; and

so on. If we’re talking about monopoly services, such as

railroads or civil services, a long (Korolev et al 2017;

Daradkeh et al 2016)

We think about the approach to vulnerability, in such a turn

to find the problem points. The vulnerability is that it has

some place of entry, into which you can enter something

that stings. It can be any open system. The closed system is

invulnerable. Communication opens systems, that is,

communication is a condition of vulnerability. Any hole

through which the exchange between the internal and

external can occur is a point of vulnerability. Any publicity

is a condition of vulnerability. If there are substances that

are outward or inward, which cause vulnerability, they are

able to spread and sting other systems in the open space, or,

spreading inside, to injure the system in which they exist.

Invulnerability appears when the system has immunity, that

is, a means of neutralizing the vulnerability substances. Or

when it is possible to disconnect the uninvited system from

the external environment. Infection can be the goal of a

particular activity that seeks to injure the system in order to

either paralyze or destroy it. The susceptibility and

immunity to an external signal must be in a certain ratio.

Sometimes use means of recognizing the threat of

wounding. But these funds themselves as standards can

contain vulnerabilities. Thus, the communicating systems

in principle cannot be pure, free from the substances of

wounding. And they require for their hygiene the

availability of filters. The article deals with issues that can

be treated as good news and as bad news in protecting

information systems from vulnerability threats. When

merging and absorbing, it is also important to put systems

in the same state, otherwise the "predator" will swallow the

"victim", and instead of combining the systems, a system

of "saturated predator" will be obtained. Six samples of

vulnerabilities, such as buffer overflow in path processing,

integer overflow in path processing, determining of a path

exists, no auditing on requests, deny access control entries

handled incorrectly authors of the book collect in table

fields that include ID, Name, Description, STRIDE

classification, DREAD rating, Corresponding threat, and

Bug. [1:240-242]

Threats to internal application security

Abstract — Practice on development the business applications for companies are presented; issues of audit

threats to information systems counterpointed as good and bad news for business and engineers. Ways to

exploit the vulnerability discussed. Audit is to minimize potential damage to the company from incorrect

performance of the software that supports a given business process. What should we worry about with

internal applications? Authors of the paper do answer on this.

Index Terms — Auditing custom-made application security, threats to business process, application threat model.

Yousef Ibrahim

DARADKEH

Svetlana Mikhailovna

ARISTOVA

Petr Mikhailovich

KOROLEV

College of Engineering at

Wadi Addawasser, Prince

Sattam bin Abdulaziz

University

Kudymkar affiliation of the

Udmurt State University

Studia Korolevae Int

daradkehy@yahoo.ca s.aristova@mail.ru studiakorolevae@mail.ru

mailto:daradkehy@yahoo.ca
mailto:studiakorolevae@mail.ru

9th International Conference on Microelectronics and Computer Science, Chisinau, Republic of Moldova, October 19-21, 2017

 387

PERFORM AN AUDIT AND BUILD AN APPLICATION

THREAT MODEL.

To minimize potential damage to the company from

incorrect performance of the software that supports a given

business process, we must perform an audit. We have to

test the software for security, function, stress and

penetrability. There are companies that focus on providing

these services, while some companies large enough have

dedicated labs that test an application’s performance before

launching it. In order to optimize the process of testing and

analyzing the protection of the software, we have to build

an application threat model.

Most corporate and ministry applications are built from

scratch, or tailored to the company from a specialized

platform, so we will refer to them as “custom-made” (as

opposed to “end-point”). They are not simply finished after

a single development cycle. Instead, they are constantly

updated and tweaked based on business or regulatory

changes, and external or internal economic or political

demands. Therefore, a custom-made application cannot be

protected in a single stroke: it must be updated to keep up

with the changes forced on the software by new tax codes,

or an entry of a foreign competitor on the market, or the

release of a new software package. With every new change,

the application must have a security audit [3].

THE GOOD NEWS

3.1 Use the application in a way that the developers

did not plan for

Application security auditing began with the rapid

expansion of the Internet. Before the Internet, a business

application (why yes, there were business applications

before the Internet) would have no more than a hundred

named users. As soon as web applications became popular,

almost any Internet user could gain access to them.

Suddenly, an application connected to the Internet could

have an enormous amount of anonymous users. Part of

these users, inspired by their anonymity, could easily try to

use the application in a way that the developers did not

plan for.

Applications connected to the Internet first gave rise to

attacks that targeted them, and, as a reaction – to various

security methods and systems that protected them. As soon

as web applications became popular, security auditing

started to focus on all application levels: interfaces,

settings, source code, etc. It stopped being a hobby, and

started being automated with dedicated tools
1
.

We will not digress too much into the fine points of the

classifications and industry standards. Suffice to say that

most of these vulnerabilities are completely irrelevant for

internal applications.

1 Despite the powerful force that web applications have played in

application security auditing, it did lead to some drawbacks by

entrenching threat modeling for business applications in general.

For example, threat modeling for any application now begins with

the OWASP methodology (Open Web Application Security

Project, www.owasp.org), which was initially created for web

applications. OWASP Top 10, an annual vulnerability

classification list has become so entrenched in application security

that it is now a requirement for many regulators, such as the PCI

Council (the consortium responsible for PCI DSS and PA DSS

standards).

3.1.1 Incorrect processing of user input data.

If the application is connected to the Internet and lacks user

input sanitization, it lets the user perform a variety of

injection attacks. Basically, the user can input some code

instead of the input the program needs (such as a

username), and send a request to the database that can grant

him information or even write access. This vulnerability is

a massive risk that can lead to data loss or denial-of-service

attacks: surely there are a handful of malicious users

among the millions that have access to the page that are

willing to try it.

3.2 To exploit the vulnerability, one needs three things

For an internal application (such as an electronic document

flow system, logging system, call center support, ERP,

CRM, billing and so on), however, this vulnerability is a

non-issue. First of all, there are very few users with access,

and all of them have gone through authorization before

gaining it: they entered the building with their pass, logged

in with their login and password or with their e-key, and so

on. Therefore, despite the fact that the user can technically

do the attack, the chances of it happening are very slim. In

order to exploit the vulnerability, you need three things:

you have to find it; you have to have the technical

knowledge to exploit it; and most importantly, be certain

you could get away with it. Those three factors are present

for most external users to at least some amount, and

eventually a user with all three will be found. For internal

users, however, combining all three is a massive

coincidence. Even if the user has found the vulnerability

(either manually or with a scanner) without his system

administrator or coworkers noticing it, he might not be able

to exploit it. Most business system users are clerks:

salespeople, accountants and managers. Very few of them

have hacking skills. But even if the user does have access

and the skills
2
, they would probably not risk running the

attack, since they know they would be caught and

punished.

3.3 No access to the whole picture.

Therefore the classical approach to web application

security is redundant for internal applications, and does not

show the whole picture. If you look at the whole spectrum

of business applications in a large company, you would see

that most of its applications are internal, making their users

employees and authorized external users, even if they use a

web-interface. This does not only include accounting, ERP,

CRM and document automation, but also the banking user

interface when doing online banking, or the checkout

screen at an online store: the user is authorized and a single

person is responsible for their action. The company has the

person’s data, which severely limits the risk of exploiting

the vulnerability.

4 THE BAD NEWS

And now we come to the bad news: we can’t use the

common web application security scanners for internal

applications, even if they use a web interface. The results

would be of no help, since they wouldn’t show any of the

actual threats. But this is not the only piece of bad news.

2 which is rare: a hacker can make a lot more money than an

accountant, so it’s unlikely that on would work as an accountant

http://www.owasp.org/

9th International Conference on Microelectronics and Computer Science, Chisinau, Republic of Moldova, October 19-21, 2017

 388

What should we worry about with internal applications?

4.1 First and foremost, a break in stability.

An incorrect request can do more damage than a hundred

hackers by simply hanging the application for a long time.

As I’ve mentioned earlier, the accessibility of a business

application is its primary characteristic – far more

important than integrity or confidentiality. A break in

integrity or confidentiality does not always lead to a direct

loss, while inaccessibility of data or a hung application

always does.

4.2 Elevating access privileges and breaking access

control

Second of all, we should worry about elevating privileges

in an application that could give the user access to

information that the user role should not be able to view. I

use the word “view” intentionally, since an internal user

sometimes only needs to see a few phrases or numbers on

the screen to start problems. It could be the salary of a

colleague or his boss, which could trigger massive

jealousy; information about VIP clients that could be of use

to journalists; intellectual property and trade secrets that

competitors would gladly pay for; revenue and losses of a

publicly traded company before they are revealed of

interest to stock brokers; and so on. You know how

confidential some information in your company is, to the

point that it’s hidden from your employees. Elevating

access privileges and breaking access control can be done

in hundreds of ways: from debugging triggers left over

from development, to specifically introduced developer

backdoors.

Since we’re already stroking your paranoia, we should also

mention vulnerabilities that could lead to forgery and

scams, in other words, those that break data integrity.

For example, there are urban legends about a few lines of

code in banking applications that keep track of all the

rounding errors, and send them to a specific account that

the developer controls. We have not personally seen any,

but it would definitely be possible to write something like

that.

4.3 Uniqueness of threat

 Most of those threats to internal application security are

unique to each business application and process. We can’t

find them using out-of-the-box or cloud-based scanners.

Even the most basic backdoor, a hidden administrator

password hardcoded into the source code, depends on how

a given application calls the authorization function.

4.4 Network traffic analysis tools wouldn’t help you

Third piece of bad news. Exploiting these vulnerabilities

for internal applications is processed as completely

legitimate transactions by the systems themselves.

Therefore, network traffic analysis tools wouldn’t help you.

If most of OWASP Top 10 vulnerability exploitations can

be tracked by network or semantic anomalies (basically,

you would see a stream of data that is odd for a given

operation), internal vulnerabilities show up as benign to

those scanners.

CONCLUSION

All of this adds up to making the process of finding these

vulnerabilities and getting rid of them is a joint process

between the client who must know the application inside

and out, and code auditors who understand the

vulnerabilities, and know how to get rid of them.

Auditing custom-made application security is a relatively

young industry, but based on how IT is currently

developing, it should develop very quickly. New

programming languages (Apple has recently launched

SWIFT, Google has released Go, etc.), new automated

objects (wearable electronics, cars, household and medical

items, etc.) with their own interfaces stimulate a push to

custom-made development, adding new developments to

business processes, and requiring more security auditing.

It is very important that you do not rely on established

threat models, but use them only for threats that are a

concern to your application.

ACKNOWLEDGMENTS

We thank for permission to use excerption of the text from

the book [2] published at Lambert Academic Publishing

REFERENCES

[1] F.Swiderski, and W.Snyder, Threat modeling.

Microsoft Press, 2004.

[2] P.Korolev, Y.Daradkeh, and S.Aristova, Connecting

Known and Unknown. LAP Lambert Academic Publishing,

2017 Available: https://archive.org/stream/brosh17-

3/brosh17-3_djvu.txt

[3] Y.Daradkeh, S.Aristova, and P.Korolev. “Observation

and Audit of the Processes in Experiences with

Uncertainty”, J Comput Eng Inf Technol

DOI: 10.4172/2324-9307.1000160. Available:

https://www.scitechnol.com/peer-review/observation-and-

audit-of-the-processes-in-experiences-with-uncertainty-

VFQT.php?article_id=5661

https://archive.org/stream/brosh17-3/brosh17-3_djvu.txt
https://archive.org/stream/brosh17-3/brosh17-3_djvu.txt
https://www.scitechnol.com/peer-review/observation-and-audit-of-the-processes-in-experiences-with-uncertainty-VFQT.php?article_id=5661
https://www.scitechnol.com/peer-review/observation-and-audit-of-the-processes-in-experiences-with-uncertainty-VFQT.php?article_id=5661
https://www.scitechnol.com/peer-review/observation-and-audit-of-the-processes-in-experiences-with-uncertainty-VFQT.php?article_id=5661

